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3Integrative Systems Biology Unit, Okinawa Institute of Science and Technology, Okinawa, Japan

In order to systematically understand the qualitative and quantitative

behaviour of chemical reaction networks, scientists must derive and analyse

associated mathematical models. However, biochemical systems are often

very large, with reactions occurring at multiple time scales, as evidenced by

signalling pathways and gene expression kinetics. Owing to the associated

computational costs, it is then many times impractical, if not impossible, to

solve or simulate these systems with an appropriate level of detail. By con-

sequence, there is a growing interest in developing techniques for the

simplification or reduction of complex biochemical systems. Here, we extend

our recently presented methodology on exact reduction of linear chains of reac-

tions with delay distributions in two ways. First, we report that it is now

possible to deal with fully bi-directional monomolecular systems, including

degradations, synthesis and generalized bypass reactions. Second, we provide

all derivations of associated delays in analytical, closed form. Both advances

have a major impact on further reducing computational costs, while still retain-

ing full accuracy. Thus, we expect our new methodology to respond to current

simulation needs in pharmaceutical, chemical and biological research.
1. Introduction
One of systems biology’s main goals is to build predictive, quantitative models

of biochemical processes, allowing for a better understanding of complex

mechanisms in living cells. While the ultimate goal of understanding all simul-

taneous relevant mechanisms and their specific interactions is desirable, its

realization is quite overwhelming, and in general simply unfeasible. This

holds especially true when aiming for accurate predictions of reaction systems,

such as gene expression and cell signalling pathways, owing to the size of the

system and the intrinsic multi-scale nature of all underlying chemical processes.

However, such limitations also apply to large-scale interaction models in

chemistry and physics.

Therefore, researchers have become increasingly interested in developing

techniques for the simplification or reduction of complex (bio)chemical systems.

The desired result of such techniques is an equivalent model that includes much

fewer elements but captures all essential dynamics, ultimately producing an

equivalent behaviour of selected ‘species of interest’ (SOI). The latter refers to

chemical/molecular species that answer specific biological/chemical questions,

or those that may be observable by experimental techniques. Some of the

known reduction techniques for chemical reactions systems involve lumping

[1,2], sensitivity analysis [3] or time-scale analysis [4–6] (see also [7]). In

these scenarios, all species that do not affect the output beyond a predefined

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.0108&domain=pdf&date_stamp=2014-04-02
mailto:andre.leier@oist.jp
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http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org


rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20140108

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 F

eb
ru

ar
y 

20
24

 

threshold are removed, and the simulation of the system

becomes an approximation of the exact solution.

Another complementary way to circumvent the so-called

crux of dimensionality is to partition large systems into com-

posite parts that can be dealt with independently. This is a

logical and practical way to proceed, and in fact has been

experimentally adopted in many synthetic biology appli-

cations (the so-called ‘plug and play’ models). By analogy,

one tempting modelling strategy would be to combine both

approaches, i.e. to partition a full system into parts that can

be combined with the bonus of reducing each of those

parts into much simpler models. Ideally, the latter would

also result in much lower total computational costs.

Separately, over the past decade, it has been widely recog-

nized that stochastic phenomena play an essential role in many

biochemical processes. This is particularly notable in the small-

scale cellular machinery, where certain key molecules occur in

low numbers. Fluctuations in such numbers are often statisti-

cally significant and relevant to the overall system dynamics.

For instance, intrinsic noise has been reported to have an

impact on cellular gene expression and regulation [8], cellular

differentiation [9], (ion) channel gating in neurons [10], pattern

formation [11] and evolution [12]. As a consequence, model-

ling and simulation frameworks that are able to represent

stochastic systems accurately have become increasingly popu-

lar. So, if one is to reduce a system exactly, then its stochastic

nature should also be taken into consideration.

The widely accepted formalism for describing stochastic

reaction systems in well-mixed scenarios is the so-called chemi-

cal master equation (CME), a system of ordinary differential

equations (ODEs) describing the time evolution of the prob-

abilities for observing the system in each possible state. In

certain cases, the CME can be solved analytically. However,

such analytic solutions are limited to specific systems [13,14].

Alternatively, finite state projections of generalized systems

can be obtained [15,16] that effectively reduce the state space,

or one may simply resort to running a stochastic simulation

algorithm (SSA) to obtain trajectories representing the time

evolution of the numbers of molecules within a simulation

volume [17–19]. The latter is the easiest option of all, if one is

solely interested in the time evolution of molecular species,

but the main drawback of using an SSA is that it can become

inefficient for systems with large numbers of molecules

and/or reactions.

Recently, we reported a new methodology for reducing

certain types of reaction systems [20], where a time delay

substituted whole sets of chemical reactions, yielding an exact
solution for the user-defined SOI. The rationale behind this

reduction was the following: sets of chemical reactions do not

produce fully functional products instantaneously. Addition-

ally, reactions are coupled, in the sense that many reaction

products can be the reactants of other reactions in the system

of interest. These combined effects, under specific circum-

stances, can be encapsulated in one or more delayed reactions.

As we showed, such delayed reactions can be in turn simulated

with a delay SSA (DSSA), the extension of the classical SSA to

systems with delays. If the lumping is correctly done, the

result is a lower dimensional system that retains all essential be-

haviour, without any loss of accuracy in the dynamics of the

SOIs. Namely, the dynamics of the SOIs in the original and

the reduced model are identical. To be more precise, the solution

of the delay chemical master equation (DCME) associated with

the abridged model is equal to the solution of the CME for the
original model with respect to the time evolution of the

probability density function (PDF) of the state space involv-

ing only SOIs. When applied to the reduced model, the DSSA

will then generate a trajectory that is sampled from the exact

solution of the DCME—just like the SSA produces trajectories

that are sampled from the exact solution of the underlying

CME. This is a significant improvement over many accelera-

tion techniques, such as tau-leap methods [21–23], which are

only approximations of a true solution. Also, our reduc-

tion methodology is not limited to particular time scales, or

separation of time scales to that extent. It can be applied irrespec-

tive of scales of kinetic parameters, and their scaling against

each other.

Our approach in Barrio et al. [20] was based on the idea of

random walks and first-arrival times. There, we imposed

some restrictions on the kind of reaction blocks that could

be lumped. These restrictions were related not only to the

type of reactions contained in the blocks but also to how

blocks could be connected among themselves. Namely, a

linear chain of reactions composing a block

S1��!c1 S2 ��! ��
c2

c2r

. . . Sn�2��! ��
cn�2

cn�2r

Sn�1��!
cn�1 Sn

was shown to be exactly reducible to a single delayed reaction

S1���!
c1, t

Sn,

with appropriate delay distribution. However, exactness in

the dynamics of the SOIs, here S1 and Sn, required the irrever-

sibility of the first and last reaction of the linear chain.

Strategies to deal with certain types of bypass, degradation

and synthesis reactions in the system were also provided.

In this paper, we extend our methodology and provide

all derivations of associated delays in analytical, closed

form. Quite naturally, this has a major impact on the

efficiency of the simulation algorithm, as we use a DSSA pro-

cedure [24,25] and the overall efficiency of this type of

algorithm depends greatly on the random number gener-

ation. Specifically, the efficiency and accuracy of our

method increases considerably by readily knowing the

expression of all associated delay distributions. However,

there are many additional benefits to adopting our modified

method, and the organization of this paper follows each

extension systematically.

First, we consider fully reversible delay reaction blocks,

aiming to reduce more general biochemical networks exactly.

In this case, our abridgement is achieved by introducing

delayed reactions for first-return times, whose PDFs can be

calculated in a similar way to those of first-arrival times.

Here, the time that a random walker needs to return to its

initial state will be generally denoted as ‘first-return’, while

the time that a random walker needs to arrive at another

state will be generally referred to as ‘first-arrival’ (in the

case of two or more SOIs). However, these definitions

underlie some differences in specific cases, the subtleties of

which will be formally introduced in §2. Analytic expressions

for the first-arrival and first-return time distributions and for

the probabilities of first-arrival versus first-return events are

then derived. As we show, this also yields previously

unknown analytic expressions of first-arrival distributions

and reaction probabilities for molecules in systems with

degradation reactions.

Second, in the past we had shown that PDFs of first-

arrival times could be derived in closed form in the presence
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Figure 1. (a) Full reaction scheme including forward and backward bypass reactions (reactions between two species Si and Sj for j j – ij . 1). (b) Abridged model
for two SOIs, S1 and Sn. This abridgement works, as long as S1 and Sn are not part of any forward and/or backward bypass reaction. Loops refer to delayed reactions
with first-return distributions. Arrows refer to either non-delayed reactions or delayed reactions with associated first-arrival distributions. Rates are denoted with c
and delays with t. The reactions with rates cnr and cn are identical to those in (a). (c) Abridged model for one SOI, S1. This abridgement requires two delayed
reactions with first-return time distributions, one for each outgoing reaction with S1 as the reactant in the original model. Note that rates and delays in (c) are
different from those in abridgement scheme (b).
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of backward bypass reactions. However, it did not seem

possible for forward bypass reactions

Sj�!
f

Si, i . jþ 1,

and these had to necessarily be dealt with numerically, by

calculating matrix exponentials. Here, we demonstrate that

delay distributions can be obtained in closed form also

in the presence of forward bypass reactions. Importantly,

this holds true for systems with or without simultaneous

backward bypass reactions. This not only provides modellers

with a more straightforward approach, but also dealing with

forward bypass reactions in closed form could further reduce

total computational costs, which was the motivation behind

our model reduction in the first place.

Third, we provide closed form expressions for degradation

and synthesis reactions in the system. We also provide separate

expressions for systems in which all of the above reactions take

place. The latter increases the applicability of our method to

open systems.

Lastly, we discuss our results and benchmark the pro-

posed method in terms of both efficiency and accuracy. All

proofs and mathematical subtleties of the method can be

found in the electronic supplementary material.
2. Preliminary definitions
Abridgements of a linear bi-directional chain of reactions

(S1 ! � � �  ! Sn) including closed circles (S1 ! � � �  ! Sn ! S1)

and forward (Sj! Si, i . j þ 1) and backward (Sj Si, i .

j þ 1) bypass reactions can be done in several ways. The appro-

priate choice depends on the system and the SOIs. A

representative system is illustrated in figure 1a, whereas two

possible abridgements are illustrated in figure 1b,c.

The first abridgement scheme shown in figure 1b contains

two SOIs, namely S1 and Sn. We can explain the scheme in

the context of a random walker that moves between positions,

each of which is uniquely attributed to a species Si in the
system. Let us assume that a walker starts at position S1 and

moves to position S2. Then, there is a non-zero probability

that the walker returns to its original position S1, before arriving

at the position of the other SOI, Sn. Likewise, there is also a non-

zero probability that the walker arrives at the position of the SOI

Sn without having revisited S1. Similar considerations hold for a

walker that starts in position Sn and moves to Sn21. We will refer

to the first scenario as ‘first-return’ and to the second scenario as

‘first-arrival’. Also, distributions describing the time that a

walker takes to return to its starting position (without having

visited any other SOI) will be called first-return distributions.

Distributions describing the time that a walker takes to arrive

at the position of another SOI (without having revisited its

original position) will be called first-arrival distributions.

Then, for each of these scenarios, first-returns and first-arrivals,

we will define a reaction with associated delay distribution that

lumps the walker’s random movements between SOIs.

First-return reactions are symbolized as ‘loops’. Such

reactions are consuming, delayed reactions Si! Si. Here,

‘consuming’ specifically denotes that the reactant is removed

from the system state at the time that the reaction is triggered

[24]. Likewise, delayed reactions Si! Sj, representing first-

arrival scenarios, are consuming reactions. For the given

example, we obtain in total four delayed reactions, two with

first-return and two with first-arrival distributions. Addition-

ally, the two non-delayed reactions between the SOIs in the

original model are taken over into the abridged model. Then,

as we explain in more detail later, the reaction rates of

the delayed first-return and first-arrival reactions will be the

products of the rates of corresponding outgoing reactions

in the original model (here c1 and cn�1r ) and the associated

first-return and first-arrival probabilities, respectively.

It should be noted that, if we were only interested in one

SOI, e.g. S1, then we do not need to ensure that all other species

match the dynamics of the full model as well. This corresponds

to the second abridgement scheme, illustrated in figure 1c. In

this case, all delays correspond to first-return distributions

and the associated reaction rates are the individual rates of
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outgoing reactions S1! X, where X denotes a species within

the original system (here, X [ {S2, Sn}).

For obvious reasons, any abridgement scheme depends

on the network structure of the original system, the choice

of SOIs and their ‘position’ within the reaction network. A

simple recipe for generating such abridgement schemes is

to create nodes for each SOI and directed links between any

such nodes, i.e. reaction arrows, if the original model contains

a sequence of reactions, where the second SOI can be pro-

duced from the first. Additional directed links need to be

added for every other such sequence starting with a different

outgoing reaction. In the abridged scheme, loops (also

referred to as self-edges) represent delayed reactions that

have the same species as both a reactant and product, and

their delay is described by a first-return time distribution.

Links between different SOIs represent delayed reactions

with an associated first-arrival distribution.

In the following sections, we describe how to derive

such delay distributions and rates of associated delayed

reactions, for various types of reaction systems. In a first

step, we attempt to create an abridged model of the system

S1 ! � � �  ! Sn for the SOIs S1 and Sn. Note that this system is

identical to the full model in figure 1a minus the two reac-

tions Sn ! S1 with rates cnr and cn. For that purpose, we

need the following probabilities and delay distributions:

(i) pr,1 and pr,n: we define pr,1 as the probability of a

walker starting at S2 to return to S1 without visiting

Sn; similarly, pr,n is the probability of a walker starting

at Sn21 to return to Sn without visiting S1. Then, pa,n ¼

1 2 pr,1 and pa,1 ¼ 1 2 pr,n are the probabilities of first-

arrival at Sn when starting at S2 and first-arrival at S1

when starting at Sn21, respectively.

(ii) Fa,n and Fa,1: these are the cumulative distribution

functions (CDFs) of first-arrival times of a random

walker starting at S2 and arriving at Sn and a

random walker starting at Sn21 and arriving at S1,

respectively.

(iii) Fr,1 and Fr,n: these are the CDFs of first-return times of

a random walker starting at S2 and returning to S1 and

of a random walker starting at Sn21 and returning to

Sn, respectively.

The probabilities pr,1 ( pr,n) or pa,n ( pa,1) are then used as rate-

adjusting factors in the DSSA to decide which of the two

delayed reactions for leaving states S1 (Sn) will be chosen:

either the first-return reaction with rate pr,1c1 ( pr,ncn21,r) and

delay distribution Fr,1 (Fr,n) or the first-arrival reaction with

rate pa,nc1 ( pa,1cn21,r) and delay distribution Fa,n (Fa,1). The

choice of rates for delayed reactions becomes clear when com-

paring the abridged and original models. For illustration

purposes, let us still use the system S1 ! � � �  ! Sn for the

SOIs S1 and Sn. Here, for example, a molecule of species S1

turns into a molecule of species S2 with rate c1. Now, to

match the dynamics of S1 in the abridged system, one must

define necessary outgoing reactions S1!X, and the sum of

all reaction rates associated with these outgoing reactions

must equal c1. Thus, in our example, the rate c1 would have

to be weighted over the two reactions S1! S1 and S1! Sn, in

accordance with the probabilities of observing a first-return,

pr,1, or first-arrival event, pa,n ¼ 1 2 pr,1, respectively. This

leads to the appropriate rates.
3. First-arrival distributions in a fully reversible
reaction chain

Denote ~A to be the n � n transition matrix of the reaction

system

S1��!c1r
S2 ��! ��

c2

c2r

S3 ��! ��
c3

c3r

. . . Sn�2��! ��
cn�2

cn�2r

Sn�1��!
cn�1 Sn, (3:1)

where S1 and Sn can be interpreted as two absorbing bound-

aries for a random walker starting either at S2 or at Sn21.

Moreover, let p2 ¼ [0 1 0 . . . 0]T and pn21 ¼ [0 . . . 0 1 0]T be

column vectors of length n and denote [n]k the kth entry of

a vector n.

Then, pa,n ¼ limt!1[e
~At p2]n and pa,1 ¼ limt!1[e

~At pn�1]1

and

Fa,n(t) ¼ 1

pa,n
[e

~At p2]n

and Fa,1(t) ¼ 1

pa,1
[e

~Atpn�1]1

are the CDFs of first-arrival times at Sn and S1, respectively

(see also Methods section of Barrio et al. [20], III.F: Numerical

solution of FTnþ1
).

Here, the sampling of t has to be done such that the

CDFs are smooth and errors due to interpolation between

time points become negligibly small. Thus, in order to

obtain a close approximation of pa,n and pa,1, t has to be

very large since we are asking for the probability of the

walker to eventually return to where it started.

In the study of Barrio et al. [20], we derived an analytic

expression for the PDF of first-arrival times at Sn. However,

owing to the additional absorbing state in S1, our previous

derivation breaks down when applied to the present scen-

ario. Nonetheless, by using the exponential form above, one

can still derive an analytic expression for the corresponding

PDF of Fa,n. Namely,

d

dt
Fa,n ¼ e1(t) w e2(t) w � � � w en�2(t),

where ek(t) ¼ �lk e��lk t and �lk ¼�lk for all eigenvalues lk(k ¼
1, . . . , n 2 2) of Â , which is the (n 2 2) � (n 2 2) rate matrix

of the system

 �
c1r

S2 ��! ��
c2

c2r

S3 ��! ��
c3

c3r

. . . Sn�2��! ��
cn�2

cn�2r

Sn�1��!
cn�1 (3:2)

(see the electronic supplementary material, §S1, for a detailed

proof). In other words, the PDF of the first-arrival-at-Sn distri-

bution is the convolution of exponential distributions with

parameters �lk, the absolute values of the eigenvalues of Â. Its

corresponding CDF is then given as

Fa,n(t) ¼
Xn�2

k¼1

Yn�2

l¼1, l=k

�ll

(�ll � �lk)

 !
(1� e�

�lk t): (3:3)

In addition, our derivation also yields an analytic expression

for the probability of arrival at Sn

pa,n ¼
Qn�1

i¼2 ciQn�2
i¼1

�li
: (3:4)
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Conveniently, it can also be shown (see the electronic

supplementary material, §S2) that Fa,n(t) ¼ Fa,1(t) and

pa,1 ¼
Qn�2

i¼1 cirQn�2
i¼1

�li
: (3:5)

The fact that both first-arrival time distributions are

identical is rather surprising and counterintuitive, in particu-

lar for systems where each reaction Si! Siþ1 is faster than its

reverse reaction Siþ1! Si. However, as it turns out, the sets of

backward and forward reaction rates, {cir }i¼1::n�2 and

{ci}i¼2::n�1, produce two effects: they (i) independently

change the arrival probabilities and (ii) together determine

the first-arrival distribution.

It is important to note that the obtained form of the first-

return time distribution is basically identical to our previous

result reported in the study of Barrio et al. [20]. However,

its entire derivation had to be done from scratch, all over

again, in order to show it can cope with the fully bi-directional

reaction scheme. Also, it is worth emphasizing that the

obtained expressions allow us to calculate the arrival

probabilities and first-arrival CDFs much faster than by

computing the matrix exponentials numerically. Lastly, the

first-arrival distributions are no longer guaranteed to

be identical once bypass reactions are introduced. This will be

discussed in detail later (§5).
4. First-return distributions in a fully reversible
reaction chain

Analogous to first-arrival distributions, we can obtain first-

return distributions by calculating the matrix exponentials

e
~At p2 and e

~At pn�1 for various times t. More precisely, with

pr,n ¼ limt!1[e
~At pn�1]n and pr,1 ¼ limt!1[e

~At p2]1 we obtain

the CDFs of first-return to Sn and S1 as

Fr,n(t) ¼ 1

pr,n
[e

~At pn�1]n

and Fr,1(t) ¼ 1

pr,1
[e

~Atp2]1,

respectively. As mentioned before, the sampling of t has to be

done such that the CDFs are smooth and errors owing to

interpolation between time points become negligibly small.

We can then derive an analytic expression for Fr,1(t),
namely

Fr,1(t) ¼ c1r

pr,1

"
M1,1(0)

Yn�2

l¼1

�ll

 !�1

þ
Xn�2

k¼1

M1,1(lk) lk

Yn�2

l¼1, l=k

(lk � ll)

 !�1

elk t

#
,

(4:1)

where M1,1(s) is the (1,1)-minor of sI � Â (see the electronic

supplementary material, §S3). For a tridiagonal matrix Â,

these minors can be calculated as M1,1(s) ¼
Q

jbj(s) with

b0(s) ¼ sþ (c2r þ c3)

and bj(s) ¼ sþ (c2þjr þ c3þj)�
c2þj c2þjr

bj�1

for

j ¼ 1 . . . n� 4:

Following the same steps, we obtain an equivalent analytic
expression for Fr,n(t)

Fr,n(t) ¼ cn�1

pr,n

"
Mn�2,n�2(0)

Yn�2

l¼1

�ll

 !�1

þ
Xn�2

k¼1

Mn�2,n�2(lk) lk

Yn�2

l¼1, l=k

(lk � ll)

 !�1

elkt

#
,

(4:2)

where Mn22,n22(s) is the (n 2 2, n 2 2)-minor of sI � Â. For a

tridiagonal matrix Â, these minors can be calculated as

described in the electronic supplementary material, §S3,

yielding Mn�2,n�2(s) ¼
Q

jbj(s) with

b0 ¼ sþ (c1r þ c2)

and bj ¼ sþ (c1þjr þ c2þj)�
c1þj c1þjr

bj�1

for j ¼ 1 . . . n� 4:

When taking the time limits of equations (4.1) and (4.2) to infin-

ity, the left-hand side of both equations becomes 1 (owing to each

being a CDF), while the second term in the sum on the right-

hand side vanishes. By multiplying both sides of the resulting

equations with the respective return probability, we obtain

pr,1 ¼ 1� pa,n ¼ c1r M1,1(0)
Yn�2

l¼1

�ll

 !�1

and pr,n ¼ 1� pa,1 ¼ cn�1Mn�2,n�2(0)
Yn�2

l¼1

�ll

 !�1

:

It should be noted that, while the two first-arrival dis-

tributions for chains of fully reversible reactions without

bypass reactions are always identical (see below), the two

first-return distributions are in general not identical.
5. Fully reversible reaction chain with additional
bypass reactions

For the system studied in Barrio et al. [20], we had argued that

the first-arrival distribution could also be derived analytically

when additional backward bypass reactions

Sj  �b Si, i . jþ 1

were present. In such a scenario, the corresponding rate

matrix has additional non-zero entries above the super-

diagonal, which does not invalidate the approach pursued

in [20]. However, we expected all eigenvalues of the

corresponding rate matrix to be real, which is not necessarily

the case. Eigenvalues are either real or come in pairs of com-

plex conjugates. As it turns out (see the electronic

supplementary material, §S4), pairs of complex conjugate

eigenvalues can be treated in the same way as real eigen-

values. That is, the expression for the convolution of

eigenvalues yields a proper PDF even when the parameters

include pairs of complex conjugate eigenvalues. This is the

case as corresponding factors of the exponentials are complex

conjugates as well. Now, irrespective of the eigenvalues being

real or not, a similar derivation of the delay distribution for

systems with forward bypass reactions fails, as additional

entries below the sub-diagonal of the rate matrix impede

the calculation of its M1,n minor (a major step in the

derivation of the delay PDF in [20]).
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In a fully reversible reaction chain, any backward bypass

reaction as seen from one end of the linear reaction scheme

becomes a forward bypass reaction when seen from the

opposite end of the reaction chain, and vice versa. In this

case, equation (3.3) yields the first-arrival delay distribution

only for the walker for which the bypass is ‘backward’, that

is, opposite to the walker’s direction. For instance, Sj! Si

with i . j þ 1 is a forward bypass for a walker starting in

S1 and arriving in Sn but a backward bypass for a walker

starting in Sn and arriving in S1. Hence, equation (3.3)

yields the first-arrival-at-S1-delay distribution, but not the

first-arrival-at-Sn distribution. Also, in the presence of either

forward or backward bypass reactions, the minors M1,1

and Mn22,n22 in the first-return distributions, namely

equations (4.1) and (4.2), are no longer tridiagonal. Hence,

they need to be computed with alternative methods.

However, if the eigenvalues of rate matrix Â are all simple,

equations (4.1) and (4.2) remain correct in the presence of

both forward and backward bypass reactions—as long as

these do not produce any SOI (see the electronic supplementary

material, §S5).

So, equation (3.3) is not correct if and when the system

has bypass reactions. In this case, assuming again that the

eigenvalues are all simple and that bypass reactions do not

produce any SOI, one needs to use

Fa,1(t) ¼ c1r

pa,1
(� 1) n�1

"
Mn�2,1(0)

Yn�2

l¼1

�ll

 !�1

þ
Xn�2

k¼1

Mn�2,1(lk) lk

Yn�2

l¼1, l=k

(lk � ll)

 !�1

elkt

#
(5:1)

and

Fa,n(t) ¼ cn�1

pa,n
(� 1)n�1

"
M1,n�2(0)

Yn�2

l¼1

�ll

 !�1

þ
Xn�2

k¼1

M1,n�2(lk) lk

Yn�2

l¼1, l=k

(lk � ll)

 !�1

elkt

#
(5:2)

with

pa,1 ¼ (� 1)n�1c1r Mn�2,1(0)
Yn�2

l¼1

�ll

 !�1

and

pa,n ¼ (� 1)n�1cn�1M1,n�2(0)
Yn�2

l¼1

�ll

 !�1

:

Note that here we recover equation (3.3) from (5.1) and

(5.2) for tridiagonal minors. Equation (5.1) has to be used

for systems with backward bypass reactions, whereas

equation (5.2) has to be used for systems with forward

bypass reactions. Both equations follow directly from our

derivation in the electronic supplementary material, §§S3

and S5. Furthermore, in the electronic supplementary

material, §S5, we outline how closed expressions can be

derived in the rather infrequent scenario that the eigenvalues

are not simple (i.e. they are no longer unique). The

expressions associated with these cases are more complex

because of additional terms stemming from the partial

fraction expansion for non-simple roots.
Lastly, bypass reactions that involve any SOI as a reactant

have to be added to the abridgement scheme, and yield two

additional delay reactions: one first-return and one first-arri-

val distribution. Our approach described in the electronic

supplementary material, §S5, is general enough to also

cover this scenario and to yield a proper CDF.
6. Degradation reactions
Degradation reactions, unless applied to any of the SOIs, can

all be lumped into one reaction. The latter can be achieved by

including a common absorbing state and all degradation

reactions in the transition matrix. Since there are no reactions

leaving the absorbing state (i.e. reactions with the absorbing

species as a reactant) its corresponding matrix column is

zero. Hence, our matrix sI � ~A has size (n þ 1) � (n þ 1)

and its shape is

sI � ~A ¼

s �c1r 0 . . . 0 0 0

0

..

.
sI � Â

2
4

3
5 ..

. ..
.

0 0

0
0

0
�

. . .

. . .
0
�
�cn�1

�
s 0
0 s

2
66666664

3
77777775

,

where the symbol ‘�’ in the last row denotes possible individ-

ual degradation rates of lumped intermediate species, and the

common absorbing state is represented by the last column

and row in sI � ~A. Here, we assume that backward and for-

ward bypass reactions do not produce any SOIs. The

determinant of this matrix can then be written as

det(sI � ~A) ¼ s3det(sI � Â) ¼ s3
Yn�2

i¼1

(s� li),

where the li, i ¼ 1 . . . n 2 2 are the eigenvalues of Â, while
~Mi,j, the (i,j )-minor of sI � ~A, can be written as

~Mi,j ¼ s2 Ci,j ~Mk,l(s),

where M̂k,l is the (k,l )-minor of sI � Â for appropriate k and l
(see the electronic supplementary material, §S5).

Thus, we obtain the same expression for F(s) as in the

electronic supplementary material, §S5, by cancelling out s2

in the nominator and denominator of the fraction:

F(s) ¼ (�1)iþj Ci,j M̂k,l(s)

s
Qn�2

i¼1 (s� li)
:

In other words, additional degradation reactions do not

lead to changes in the closed expressions for the CDFs of

first-return and first-arrival times. Note also that we obtain

the probabilities of degradation as pdeg,1 ¼ 1 2 pr,12 pa,n

and pdeg,n ¼ 1 2 pr,n2 pa,1, where the first probability refers

to degradation on a walk starting at S1, and the second to

degradation on a walk starting at Sn.
7. Synthesis reactions
Synthesis reactions introduce new molecules to the system.

Reactions producing SOIs are simply taken over into the

abridged system. If a synthesis reaction ; ! Si produces

one of the intermediate species that are not represented in

the abridged scheme, then additional delayed reactions

; ! Sj need to be added, namely one for each SOI Sj that
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Figure 2. Reaction system consisting of a fully bi-directional chain between
the two SOIs S0 and S9 and two uni-directional bypass reactions. Rates are
noted next to the reaction arrows.
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the intermediate species can transform into. For example, in

the case of the fully linear reaction chain with two SOIs, S1

and Sn, one would need to add two delayed reactions,

; !S1 and ; !Sn, each associated with a specific delay

distribution. Such distributions are then obtained as first-

arrival-at-S1 and first-arrival-at-Sn distributions Fi,1 and Fi,n,

respectively. Their derivation follows the steps in the

electronic supplementary material, §S5.
08
8. Reduction example I
We illustrate the accuracy and efficiency of our approach by

exploring the system illustrated in figure 2. Here, we mark

the two SOIs (S0 and S9) with underbars.

We adopted the reduction methodology described in §5,

and compared with simulations of the full system. Results

can be found in figure 3. There, figure 3a visually shows

the accuracy of our method, with a perfect match between

CDFs of all four distributed delays obtained analytically

(dots) or by sampling from SSA simulations (solid

lines). Figure 3b illustrates the dynamics of the system over

10 time units when starting in state (S0, S9) ¼ (0, 200). For

this example, the speed-up of DSSA (rejection method, [24])

over SSA simulations is about sixfold.

When lumping the same system to just one SOI S9 with a

single delayed reaction S9! S9, we obtain the first-return dis-

tribution shown in figure 4a. Evidently, the sampled and the

analytically derived CDFs of the first-return distribution are

identical. Note that the first-return-to-S9 delay distribution

used here is different from the one in figure 3a, since the

delay now has to also include walks that arrive at S0. Then,

by plugging this distribution into the DSSA, we obtain the

same result as above (figure 4b) with a 15-fold speed-up

over SSA simulations.

It is important to note that initial conditions of a full,

original system are in general not readily transferable to cor-

responding initial conditions of the abridged system. Only

the numbers of molecules of SOIs in the latter remain identi-

cal to those in the original model. By contrast, the molecules

of abridged species all together correspond to a history in

the abridged model. That is, such molecules have to be

represented by individual delays (one delayed reaction per

molecule). Obtaining such delays in turn requires the calcu-

lation of additional delay distributions: for each abridged

species Si with at least one initial molecule in the unabridged

model, one has to calculate the first-arrival times to any given

SOI in the abridged system together with the associated prob-

abilities of arrival. Then, prior to any DSSA simulation, the

delay history is constructed by drawing a delayed reaction

for each non-SOI molecule. A delayed reaction is chosen by
first drawing an arrival state, using the calculated probabil-

ities of arrival, and then drawing the update time point

from the corresponding delay distribution, which is deter-

mined by the starting species (non-SOI) and the arrival

species (SOI). All such drawn delayed reactions will enter

the DSSA’s update queue for delayed reactions. For details

of the DSSA implementation, we refer to [24].
9. Reduction example II: glycolysis
Metabolic pathways are composed of interconnected bio-

chemical reactions where, typically, the products of one

reaction are the substrates of subsequent reactions. In this

section, we will focus on glycolysis [26], one well-known

metabolic system. The end result of glycolysis is the break-

down of glucose, but several reactions in this autocatalytic

pathway are reversible, contributing to gluconeogenesis.

The latter is the generation of glucose, and it is one of the

main mechanisms with which several animals regulate

blood glucose levels. Importantly, when glucose enters a

cell, ATP phosphorylates it irreversibly.

The specific glycolysis example we present here is a minim-

alist model that was recently shown to preserve some basic

dynamic properties [27,28]. The basic components of this gly-

colysis model [27] are the production of ATP, which is also

consumed early in the pathway, and the transcription of phos-

phofructokinase (PFK), an enzyme that is downregulated by

ATP. Besides these two elements, there are a number of inter-

mediate species that represent the inner loop of the glycolysis

pathway. It is worth noting that this model does not show

the enzymes involved in catalysing the allosteric reactions,

and all species can be consumed through a non-specific

consumption process.

The reaction scheme of the glycolysis model in [27] has

the form

Y��!f(Y) X1 ��! ��
g1

h2

X2 ��! ��
g2

h3

X3 ��! ��
g3

h4

X4 �!
g4 2Y �!gy ,

where Y denotes ATP. The activity of PFK is only implicitly

modelled here as part of the initial autocatalytic reaction,

with a rate

f(Y) ¼ V(wY)q

1þ g (wY)h :

For illustration purposes, we will not consider the degra-

dation of intermediate species Xi at this moment. However,

extending the scheme to degradations is easily possible

within our abridgement framework.

We will use the following abridgement scheme with one

delayed and one non-delayed reaction:

Y���!f(Y), t1 2Y �!gy
:

For simulations, the following parameters were selected:

V ¼ 500, w ¼ 0.5, q ¼ 2, h ¼ 5, g ¼ 2, gi ¼ 2 for i ¼ 1 . . . 4,

gy ¼ 0.5, hi ¼ 1 for i ¼ 2 . . . 4. Our initial condition was

set to Y ¼ 100. Figure 5a shows the average trajectories of

both the SSA and DSSA over 10 000 simulations each, and

figure 5b shows a comparison of histograms of the number

of Y molecules at time t ¼ 40 (arb. units). For such parameter

values simulations over 100 time units of the abridged

system are about 1.6 times faster than SSA simulations of

the original system.
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10. Reduction example III: kinetic proofreading
in T-cell receptor signalling

Upon ligand binding, T-cell receptor complexes undergo a

series of modifications before transmitting a signal. In [29],

the author developed a kinetic proofreading model that

shows how the temporal lag created by intermediate modifi-

cations may greatly enhance the ability of the receptor to

discriminate foreign antigens from self-antigens with moder-

ately lower affinity.

The underlying processes in T-cell receptor signalling

are constituted by a long chain of reactions, activating a

ligand–receptor complex via tyrosine phosphorylation

and/or recruitment of additional components. However,

complex dissociation is also possible, reversing modifications

through phosphatases.

The proposed reaction scheme of T-cell kinetic proofreading

in [29] is

k–1

k–1

k1
C1 C2 C3 C4 C5 C6 ,C0+| | |T M

kp kp kp kp kp kp

where all SOIs appear underlined. Here, nascent complexes

formed from the binding of the T-cell receptor (T ) and a

peptide (M) undergo N intermediate steps (N ¼ 6, which has

been adjusted to a rather conservative example in the

number of intermediate steps [29]), before generating the

active complex, from which major signals are then transmitted.

We will now use the following abridgement scheme with

two delayed reactions and one non-delayed reaction:

k1 (1�p), t2 T þM��! ��
k1p,t1

k�1

C6:

The symbol refers to a reaction that consumes its reac-

tants (here, T þM) and produces the same reactants

again after a specified delay (t2). p is the probability that

the final and fully active complex C6 is produced and, hence,

1 2 p is the probability that a complex, while undergoing

modifications, dissociates.
Figure 6a shows simulation results and figure 6b shows the

two delay distributions obtained for parameters k1 ¼ 1, k21 ¼

0.25, kp ¼ 5, with initial conditions T ¼M ¼ 200 and C6 ¼ 0.

For this set of parameters, we did not observe any speed-up

(nor any slow-down) between the original and lumped model

simulation times. However, additional simulations were per-

formed considering different parameter settings, highlighting

trends in computational savings. For instance, when k21/

kp � 1023, the abridged model with the DSSA was faster (a

speed-up factor of approx. 1.4 for the abridged case). In the

opposite case, kp/k21 � 1023, the original model simulated

with the SSA was faster (here, a slow-down of approx. 0.4

was observed). As in the examples above, speed-ups are only

substantial when the number of SSA reactions is very large,

and this highly depends on the choice of parameters.
11. Discussion
Simulating biochemical processes accurately can be a pain-

staking task. Realistically, choosing the correct model is not

always straightforward and, even when deriving a suitable

representation, solving/simulating such models presents its

own hurdles. For instance, networks of chemical interactions

can be very large, and involve multiple time scales. Thus,

simulations considering large numbers of molecular species

in relevant time scales can be computationally expensive, if

not unfeasible. As a consequence, a lot of effort has been

put into either accelerating existing simulation techniques

or obtaining reasonable approximations to real dynamics.

Recently, we presented a novel methodology reducing

certain types of chemical systems exactly, while yielding

large computational savings, of several orders of magnitude

[20]. The latter was achieved by substituting large numbers

of chemical reactions with prescribed time delays, outputting

an exact solution for a user-defined SOI. Additionally, blocks

of lumped reactions could be connected with each other. This

provided a clean strategy to break large systems into manage-

able parts, retaining full accuracy of the selected SOI.

However, exactness in the dynamics of the SOI required the

irreversibility of the first and last reaction of the chain.

In this paper, we extended our methodology in [20], and

provided derivations for all associated delay distributions in
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analytical, closed form. The latter includes all types of bypass,

degradation and synthesis reactions. Additionally, we were

able to provide a methodology for fully reversible chains,

where the SOI can also be involved in reversible reactions.

Each of the possible model extensions was introduced, one

by one, and a general formulation for all simultaneous possible

extensions can be found in the electronic supplementary

material, §S5. The analytical expressions obtained further

alleviate computational overheads. Namely, those associated

with deriving delay distributions numerically by matrix

exponentiation. By consequence, total computational costs

can be significantly reduced. A step-by-step summary of the

reduction methodology can be found in the electronic

supplementary material, §S6.

It is worth noting that the correct definitions of SOIs, first-

return times and first-arrival times constitute a crucial step.

Our methodology can exactly reduce bi-directional chains of

monomolecular reactions, along with parallel bypass, degra-

dations and synthesis reactions. However, modellers may

even define more intricate systems. For instance, bimolecular

reactions are allowed at the beginning and end of linear reac-

tion chains. Also, two chains of chemical interactions that are

connected by a bimolecular reaction can each be lumped by

defining reactants involved in the bimolecular reaction as SOIs.

We illustrated some of the computational savings achievable

by using our methodology by comparing the computational

costs of stochastic simulations of unabridged systems (using

the SSA) with those of the corresponding lumped systems

with delays (using the DSSA). Additional simulation scenarios

can be found in the electronic supplementary material with a

larger number of bypasses, separation of time scales between

rate parameters, and the consideration of non-SOI initial

conditions. We also presented two applications in biology:
reduction of a glycolysis model and kinetic proofreading in

T-cell signalling.

The applicability of our methodology is not limited to bio-

chemical reaction networks. It extends to Markov-chain

models and other processes consisting of interconnected, sub-

sequent transformation steps. For example, in chemistry, the

study of polymerization processes such as the formation of

soot in hydrocarbon combustion [30] could greatly benefit

from our technique. The same holds for oxidation processes,

for instance hydrocarbon oxidation [31], as they involve a

large number of functional isomers and isomerization reactions.

Depending on the case, the computational savings can be

quite significant. However, it should be noted that the SSA is

by now standard, and several algorithms have been

implemented to make it as efficient as possible [32]. In com-

parison, only two exact DSSAs exist: the rejection method [24]

and the direct DSSA [25]. It would be interesting to see the

extent to which full optimization of the DSSA code will

yield further computational cost reductions. A combination

with available delayed tau-leap methods [21] might also be

an interesting direction to explore and is likely to reduce

computational costs further. However, as is the case in any

coarse-grained method, exactness would no longer be guar-

anteed, and a compromise between cost and accuracy

would be in place.

Lastly, it should be noted that our method is also applicable

when modelling chemical reaction networks deterministically.

In this case, the set of ODEs describing each species should be

replaced by a reduced set of delay differential equations—one

for each SOI. We have not carried out any performance studies

for deterministic models but it is reasonable to assume that our

methodology will gain computational savings also for very

large, deterministic systems.
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