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Abstract. More than half of the total renewable addictions correspond to solar photo-
voltaic (PV) energy. In a context with such an important impact of this resource, being 
able to produce reliable and safety energy is extremely important and operation and 
maintenance (O&M) of PV sites must be increasingly intelligent and advanced. The 
use of Artificial Intelligence (AI) for the defects identification, location and classifica-
tion is very interesting, as PV plants are increasing in size and quantity. Inspection 
techniques in PV systems are diverse, and within them, electroluminescence (EL) in-
spection and current-voltage (I-V) curves are one of the most important. In this sense, 
this work presents a classifier of defects at the PV cell level, based on AI, EL images 
and cell I-V curves. To achieve this, it has been necessary to develop an instrument to 
measure the I-V curve at the cell level, used to label each of the PV cells. In order to 
determine the classification of cell defects, CNNs will be used. Results obtained have 
been satisfactory, and improvement is expected from a greater number of samples 
taken. 

Keywords: photovoltaic cell defect, classifier, artificial intelligence, electrolu-
miniscence. 

1 Introduction 

During the last years, global installation of renewable generation installations has sig-
nificantly increased. In 2019, the last analyzed year in the Global Status Report [1], 201 
GW of renewable power capacity were installed in the World, being 115 GW of Solar 
Photovoltaic (PV) capacity, which corresponds with more than 57% of the total renew-
able addictions. 
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In this context in which solar PV energy has such an important impact, being able to 
produce reliable and safety energy is extremely important. Ensuring energy production 
is a key factor in warranting plant profitability, and this has forced the design of in-
creasingly intelligent and advanced Operation and Maintenance (O&M) strategies. Tra-
ditionally, different inspection techniques have been used in PV sites with the objective 
of detecting anomalies that reduce the system efficiency and can generate safety issues, 
as Infrared thermography inspections (IRT) [2], electroluminescence (EL) [3–5] or cur-
rent-voltage (I-V) curves capturing [5, 6]. The development of new equipment and 
methodologies for its application in PV plants are necessary, and in this sense, research 
and industry are evolving rapidly [7]. The increased plant size has promoted the use of 
drones for the image capturing [8, 9], however the amount of data to process is unap-
proachable, requiring important human efforts and being very expensive and time-con-
suming.  

The use of Artificial Intelligence (AI) for the defects identification, location and 
classification is very interesting. AI is already being applied in PV solar plants. How-
ever, its main application has being long focused on energy production forecasting is-
sues. Authors in [10] develop a solution that provides the electricity production based 
on historical and current available solar radiation data in real-time. Some authors pre-
sent a taxonomy study, which is a process to divide and classify the different forecasting 
methods, and the authors also present the trends in AI applied to generation forecasting 
in solar PV plants [11]. The use of artificial neural networks (ANN) has been successful 
in the last decade, some authors use ANN together with climatic variables to forecast 
generation in PV solar plants [12], while others use Support Vector Machine (SVM) 
together with an optimization of the internal parameters of the model [13]. ANN have 
also been used for other tasks, such as for the detection of problems in energy produc-
tion, as is the case of work [14], where the authors use radial basis function (RBF) to 
detect this type of failure in production. A similar goal is sought in [15], where this time 
an SVM-based model is employed for describing a failure diagnosis method that uses 
a linear relation between the solar radiation and the power generation graphs. This re-
search studies the following failure types: inverter failures, communication errors, sen-
sor failures, junction box errors and junction box fire. The model classifies string and 
inverter failures. However, in actual PV plants each inverter can cover thousands of 
modules, and therefore important failures information can be lost in the classification 
[16].  

In general, the application of AI technologies based on data-driven mechanisms 
helps to construct automatic fault classifiers and improves the efficiency and accuracy 
of faulty diagnoses [17]. A convolutional network, based on the analysis of the differ-
ence in the I-V curves of PV arrays under different failure states, capable of identifying 
not only a single failure (e.g., short circuit, partial shading, and abnormal aging) but 
also hybrid failures [17]. Authors in [18], authors investigate the effect of data augmen-
tation techniques to increase the performance of our proposed convolutional neural net-
work (CNNs) to classify anomalies between up to eleven different classes, in PV mod-
ules through thermographic images in an unbalanced dataset. This work is performed 
at the PV module level. 
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This work presents a classifier of defects at the PV cell level, based on AI, EL images 
and cell I-V curves. To achieve this, it has been necessary to make an instrument to 
measure the I-V curve at the cell level, used to label each of the PV cells. In order to 
determine the classification of cell defects, CNNs will be used. The document is struc-
tured as follows: section 2 presents the materials and methodology used, section 3 
shows the results and discussion and section 4 deals the conclusions and future work. 

2 Materials and methodology 

This section is intended to explain the materials used, as well as the followed method-
ology to validate the classifier. 

2.1 Materials 

For this work, it has been necessary to develop special equipment and material. Firstly, 
regarding the PV devices, individual PV cells have been used. In this case, researchers 
have made the necessary welds to connect the required equipment, as it can be seen in 
Figure 1. One hundred PV cells have been used, which have subsequently been reused 
with artificial shadows, to have a greater number of measurements. Table 1 shows the 
basic electrical information of the PV cells used. 

 
Figure 1. PV cell sample with welds already made. 

Table 1. Information of PV cells. 

PV cell parameter PV cell parameter value 
ISC (A) 7.5 

VOC (V) 0.6 
PMP (W) 4.67 

Once the PV cells were prepared as detailed before, it is necessary to obtain their 
individual I-V curves. To do this, it has been required to excite the PV cells, for which 
a LED board composed of 42 LEDs has been used with the following characteristics: 
OSRAM brand, 850 nm, 1 A forward current, 630 mW of radiant flux at 1 A and 100 
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microseconds, with a maximum temperature of 145 ºC. Figure 2 shows an image of the 
LED board. It has a diffuser screen to be able to homogenize the flow of light. 

 
Figure 2. LED plate with diffuser mounted on support to take measurements. 

Once the PV cells are illuminated with the LED board, the I-V curves are taken from 
an ingenious device developed by the authors, based on the charging and discharging 
of capacitors, and controlling the sweep by means of a simple microprocessor. This 
device is very versatile, since it allows to make the I-V curve from the second quadrant 
to the fourth quadrant through the first quadrant. However, for the presented research, 
the interest is only focused in the first quadrant. 

 
Figure 3. Device for drawing I-V curves at the PV cell level. 

On the other hand, to be able to do EL, it is necessary to connect the PV cell to an 
external power source and to obtain the corresponding image. In this case, it is no 
needed to illuminate the PV cell (by means of an LED board). To be able to make the 
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capture, a special camera is necessary, specifically, it has been used an InGaAs camera, 
Hamamatsu brand and C12741-11 model. 

 
Figure 4. InGaAs camera, Hamamatsu brand and C12741-11 model, for EL 

imaging. 

Figure 5 a) shows a PV cell exposed to artificial irradiance to obtain its I-V curve, 
and Figure 5 b) shows the same PV cell subjected to inverse voltage to obtain its EL 
image. 

 
Figure 5. a) Obtaining I-V curve of PV cell; b) Obtaining EL image of PV 

cell. 

2.2 Methodology 

As already mentioned, the data was obtained manually, since the I-V curve of each of 
the cells of the data set was required, as well as their EL images. Therefore, none of the 
datasets that were in free repositories could be used. To carry out the EL images, an EL 
camera has been used, using different shades and irradiances to increase the amount of 
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data available in the final set. To obtain the I-V curve, the device built by the research 
team and previously presented has been used. 

All images have had histogram adjustment done, making details and differences eas-
ier to see for the human eye, as well as for AI models. In order to be able to use the data 
of the I-V curve, the power values have been computed. Of all the values, only the 
highest value of each of the measurements will be taken into account. The power values 
will depend on the irradiance at which the measurement has been made, therefore, all 
measurements taken at the same irradiance will be processed. For this, the 5 highest 
power values will be chosen and the average will be made. In this way, authors will 
obtain a value that will represent the maximum power of a cell in good state. By choos-
ing only the highest powers, the false information that the defective or shaded cells 
would provide will be ignored. 

In order to have a greater number of samples, each of the measured cells has been 
subjected to partial shading, in order to repeat the measurements. 

With the measurement of the absolute maximum power, authors will compute the 
relative power, calculating the proportion between the maximum power of each of the 
panels and the calculated power. This will give a continuous variable that will need to 
be divided into intervals if the problem is posed as a classification. The intervals should 
be decided in such a way that they allow the training to be carried out correctly and also 
the classes have a meaning in the context, that they are useful. 

In Figure 6 it can be seen the histogram of the random variable and of the chosen 
classes. Class 0: PV cells in good condition (relative power > = 0.825); Class 1: PV 
cells in questionable condition (relative power < 0.825 and > = 0.725); Class 2: PV 
cells in poor condition (relative power < 0.725). 

 
Figure 6. Relative power and classification of PV cells once the I-V curves 

have been made. 

Once the information is available (I-V curves and EL images), it is necessary to use 
AI-based models to be able to train this models and to make the classifier. To resolve 
the classifier issue, it was decided to use an ANN-based architecture, specifically a 
CNNs, since it is a network that works very well with images. This is evident in the 
scientific literature. Figure 7 shows the architecture used and the relevant hyper-param-
eters. 
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Figure 7. Optimized architecture and hyper-parameters. 

The structure was chosen following a systematic procedure of trial and error. Differ-
ent configurations were tried until the best results were found, a deeper network only 
resulted on over-fitting and shallow networks performed worse. 

 The hyperparameters were optimized following a similar approach. Different learn-
ing rates (0.05, 0.005, 0.0005, 0.00005, 0.000005) were compared. The one which the 
best performance was found to be 0.00005. This same principle was followed when 
setting the activation function: Relu was compared with Elu, Selu and Leaky Relu. The 
optimizer was chosen after comparing Adam with Nadam. 

Other important feature of the system was the use of Data-Augmentation.  An online 
data generation was used in the network training in other to improve its performance. 
The images went through limited rotations of less than 5 degrees and vertical or hori-
zontal flips. The reason is that more intrusive modifications would not be real. Cells 
with big distortions would have a different IV curve. In each epoch new instances were 
generated choosing a new angle and flip. 

Figure 8 shows the evolution of the accuracy and loss during the training and vali-
dation phases. In the accuracy graph, it can be seen how there is no difference between 
the train and validation sets, which implies that the network hardly experiences over fit. 
In the loss graph, an increase in over fit is observed from iteration 100, but at no point 
does it become considerable. The final network chosen will be that of iteration 195, 
which has a 90% in the validation set and a 0.5 in loss. 
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Figure 8. Evolution of accuracy and loss, for the training and validation 

phases. 

3 Results and discussion 

3.1 EL imaging and I-V curves 

Figure 9 shows some EL images measured for this work. The images in the figure show 
the same PV cell, but with a different shade. The figure at the top left shows a PV cell 
without a shadow, but with a failure defect in the middle of it. The rest EL images, 
show the same PV cell with different added artificial shadows. 
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Figure 9. EL images of a PV cell with different artificial shadows. 

Figure 10 shows the measurements of the I-V curves of a specific PV cell. The dif-
ferent curves represent the I-V curve at different irradiances levels and/or with artificial 
shadows. The figure also shows the P-V curves of the PV cell. 

 
Figure 10. I-V curves of a specific PV cell and P-V curves. 

3.2 CNNs 

With the available data, the CNNs has been trained and its results have been obtained, 
after the validation phase. 
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In Figure 11, it can be seen how the behavior in the non-training data set is similar 
to the validation one, reaching 87% precision, a very high behavior and very similar to 
that obtained in the validation during the training phase. It can be seen how the CNNs 
perfectly distinguishes classes 0 and 2, with only one instance in which an error occurs, 
which indicates that the model differentiates PV cells in good condition from PV cells 
in poor condition. For class 1, its behavior can be improved, since it has more difficul-
ties to classify this class well, although it still gives good results. The inclusion of data 
augmentation improved the performance of the model. 

 
Figure 11. Results of the CNNs. 

4 Conclusions and future work 

The work has presented a classifier of defects in PV cells, based on AI and from EL 
images. For the perfect classification, it was necessary to use the I-V curve of each of 
the PV cells. For this, it has been necessary to make an instrument to measure the I-V 
curve at the cell level, which has served to label each of the PV cells. A CNNs has been 
used, and the results obtained have been satisfactory, and improvement is expected 
from a greater number of samples taken. 

The researchers will expand the data set manually and using techniques to generate 
synthetic data as Generative Adversative Neural Networks (GANN), and will try an-
other type of PV cell. In addition, the intention is to classify the defects of complete PV 
modules. 
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