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Abstract—A key requirement for RRAM in neural network
accelerators with a large number of synaptic parameters is
the multilevel programming. This is hindered by resistance
imprecision due to cycle-to-cycle and device-to-device variations.
Here, we compare two multilevel programming algorithms to
minimize resistance variations in a 4-kbit array of HfO2 RRAM.
We show that gate-based algorithms have the highest reliability.
The optimized scheme is used to implement a neural network
with 9-level weights, achieving 91.5% (vs. software 93.27%) in
MNIST recognition.

Index Terms – Resistive-switching random access memory
(RRAM); multilevel programming; resistance variability; weight
quantization; hardware neural networks; in-memory computing.

I. INTRODUCTION

Artificial intelligence (AI) has recently driven excellent
achievements in various emerging application tasks such as
image recognition, natural language processing, and desease
recognition by massive training of deep neural networks
(DNN) in the cloud [1]. However, the extensive use of central
processing units (CPU) and graphics processing units (GPU)
with von Neumann architecture for cloud computing requires
a significant amount of energy and time due to the intensive
data transfer between memory and computing units [2]. These
energy and latency issues of AI in conventional systems
represent a crucial issue for the transition from the cloud to
the edge, namely in battery-powered portable devices such as
smartphones, wearable sensors and internet of things (IoT).

A promising approach to improve the energy efficiency
of AI training and inference is in-memory computing (IMC)
with novel memory devices such as resistive-switching ran-
dom access memory (RRAM) and phase change memory
(PCM) [3], [4]. In fact, RRAM and PCM memory devices
can perform physical computation where the data storage takes
place by the Ohm’s law and Kirchhoff’s law, thus leading to an
efficient execution of the matrix-vector multiplication (MVM)
in DNNs in terms of area consumption, speed, and energy [5].
Also, the rich portfolio of the properties of these devices
includes the multilevel cell (MLC) operation [6]–[8], which is

Fig. 1. (a) Sketch of TiN/Ti/HfO2/TiN RRAM cell with 1T1R structure. The
n-channel MOS connected in series to the RRAM is used to select the RRAM
device and limit the maximum current flowing during the set transition. (b)
Median I − V characteristics of 1T1R RRAM device for increasing VG-
controlled compliance current IC indicating well-controllable MLC operation
in the 1T1R device.

a key feature for achieving analog synaptic weights enabling
DNN training/inference with software-equivalent performance
in hardware [9].

While these major advantages have been explored in neural
network arrays in recent years [10]–[13], both device-to-device
(D2D) and cycle-to-cycle (C2C) variations of resistance raise
strong concerns in achieving high accuracy for weight pro-
gramming in hardware arrays [14]. Also, the limited number
of programmable weight levels hinders the achievement of
the software-equivalent training/inference performance [15].
It appears that the co-optimization of weight quantization
schemes and MLC programming algorithms used to map the
software weights into the hardware arrays is a key requirement
to minimize the accuracy loss with respect to the DNNs trained
in software.

In this work, we study two MLC approaches, namely (i)
incremental step pulse with verify algorithm (ISPVA) [16] and
(ii) incremental gate voltage with verify algorithm (IGVVA)
based on 100 mV (IGVVA-100) and 10 mV (IGVVA-10)
voltage steps. Based on data for 5-level programming of a 4-
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Fig. 2. Schematic of MLC programming by ISPVA and IGVVA. (a) In
ISPVA, the LRS levels were programmed by application of set pulses at
increasing VTE from 0.5 V to 2 V with 100 mV voltage step, keeping VG

fixed at 1 V, 1.2 V, 1.4 V, and 1.6 V, respectively. (b) In IGVVA, the LRS
levels were programmed by tuning VG from 0.5 V to 1.7 V, keeping VTE

fixed at 1.2 V. IGVVA was experimentally investigated using two VG steps
equal to 100 mV and 10 mV, respectively. The read operation was performed
for both algorithms by applying a gate voltage Vr,G = 1.7 V and a TE voltage
Vr,TE = 0.2 V.

Fig. 3. CDFs of 5 conductance levels programmed by ISPVA, IGVVA-100,
and IGVVA-10. IGVVA-10 CDFs show higher accuracy than ISPVA CDFs
for all the levels, which in turn display lower variability than IGVVA-100
CDFs.

kbit HfO2 RRAM array, IGVVA-10 shows the best accuracy,
which is explained by the programming characteristics of the
one-transistor/one-resistor (1T1R) RRAM cell. The optimized
5-level algorithm is used to program 4-kbit synaptic weights
of a 2-layer neural network. We achieve a high inference
accuracy namely 91.5% compared to 93.27% software accu-
racy in MNIST recognition as a result of the co-optimization
of quantized-weight training scheme and MLC programming
algorithm.

Fig. 4. Standard deviation of CDFs in Fig. 3 for increasing median
conductance <G>. The levels programmed by IGVVA-10 exhibit the lowest
variation.

II. DEVICE STRUCTURE AND MLC OPERATION

Fig. 1(a) shows the 1T1R structure of our RRAM device
used in a 64x64 array of 4-kbit. The RRAM is based on a stack
including a TiN top electrode (TE), a Ti oxygen scavenger
layer, an amorphous HfO2 switching layer, and a TiN bottom
electrode (BE). Also, the RRAM device is connected in series
with a n-channel MOS manufactured in 0.25 µm CMOS
technology, serving as both select device and current limiter
by a compliance current IC [17]. Fig. 1(b) shows the measured
current-voltage (I−V ) characteristics of RRAM for increasing
IC , exhibiting an abrupt set transition at positive voltages from
the high resistance state (HRS) to the low resistance state
(LRS), and a more gradual reset transition at negative voltages
from the LRS to the HRS. These I−V curves indicate that the
1T1R HfO2 RRAM device provides a well-controllable MLC
operation by tuning IC via the gate voltage VG [18].

To map 5 levels in the 1T1R RRAM cell, two programming
strategies referred to as ISPVA and IGVVA were designed
and experimentally tested at device level. Fig. 2(a) shows
the ISPVA for MLC programming. In ISPVA, set pulses at
increasing TE voltage VTE were applied to the HRS or
L1 from 0.5 V to 2 V with 100 mV step and pulse width
tpulse = 1 µs [16]. VG was kept constant to control IC
depending on the target level of the LRS. In particular, IC
is targeted to 10 µA, 20 µA, 30 µA and 40 µA for L2, L3,
L4 and L5, respectively. Fig. 2(b) shows the IGVVA, where
VTE was kept constant to 1.2 V (larger than the set voltage
Vset = 0.9 V) while VG was increased step-by-step from 0.5 V
to 1.7 V until the desired LRS was reached. In particular, two
values of the voltage step ∆VG were used in IGVVA, namely
∆VG = 100 mV (named IGVVA-100) and 10 mV (IGVVA-
10). Note that in both MLC schemes any programming pulse
at gate terminal and TE is followed by a read pulse with
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Fig. 5. Median I − V characteristics of 4 LRS levels (L2∼L5) programmed by ISPVA, IGVVA-100, and IGVVA-10. The abrupt set transitions obtained
by the application of ISPVA suggest that ISPVA is not suitable to finely tune the level conductance. On the other hand, the smoother conductance increase
achieved by IGVVA-100 and IGVVA-10 indicates that the current modulation by VG is more precise than the modulation by VTE used in ISPVA. IGVVA-10
provides a more accurate programming than IGVVA-100 as a result of its finer voltage step.

Fig. 6. Maximum slope of I − V characteristics in Fig. 5 as a function
of the median conductance <G>, which supports the increasing abruptness
of set transition for increasing level in ISPVA compared with the smoother
conductance increase in IGVVA-100 and IGVVA-10.

amplitude Vr,G = 1.7 V and Vr,TE = 0.2 V, respectively, to
verify the programmed device state.

Fig. 3 shows the cumulative distributions (CDFs) of de-
vice conductances for ISPVA, IGVVA-100, and IGVVA-10
programming of the 4 kbit RRAM array. Among the 5 levels
L1∼L5 read at 0.2 V, IGVVA-100 exhibits a larger variability,
expecially for L2, followed by ISPVA and IGVVA-10. The
latter is the most accurate algorithm in that it provides CDFs
with the minimum D2D variability. Note that we programmed
each LRS level using a quarter of the total array. To better
assess the D2D variations of 5 levels, Fig. 4 shows the standard
deviation σG of the CDFs as a function of the median conduc-
tance <G> for the various algorithms. While σG for ISPVA
increases at low <G> and decreases at high <G>, IGVVA-
100 and IGVVA-10 show a gradual decreasing behavior of
σG for increasing levels. In particular, IGVVA-100, which
has the highest variability, becomes closer to ISPVA from

the intermediate levels. On the other hand, IGVVA-10 shows
the smallest σG for all the levels, achieving a minimum D2D
variation slightly larger than 2 µS.

To understand the dependence of D2D variation on the algo-
rithm, Fig. 5 shows the median programming characteristics of
levels L2∼L5 for ISPVA, IGVVA-100 and IGVVA-10. ISPVA
generally shows an abrupt set transition in correspondence of
Vset, which makes it difficult to finely tune the conductance.
On the other hand, IGVVA shows a smoother increase of
conductance thanks to the tight control of IC by VG tuning.
Additionally, IGVVA-10 shows the best accuracy thanks to
the finer ∆VG allowing a more accurate IC modulation. In
particular, note that L2 with <G> = 50 µS shows the ISPVA
curve slightly smoother than IGVVA curves. This behavior
results from the low VG of 1 V applied to set the IC to 10
µA, which hinders the set transition in RRAM device until
the voltage across the RRAM becomes larger enough than
the voltage across the less conductive MOS according to the
voltage divider rule.

To gain more insight about the algorithm programming
accuracy, Fig. 6 displays the slope dI/dV of median charac-
teristics for ISPVA, IGVVA-100 and IGVVA-10 as a function
of the programmed level. In agreement with Fig. 5, ISPVA
exhibits a large slope with linear increase for increasing level
whereas IGVVA-100 and IGVVA-10 show a smaller slope
with negligible dependence on ∆VG. Based on the dI/dV and
σG behavior for each algorithm, clearly IGVVA-10 appears as
the best algorithm for MLC programming in the 4-kbit RRAM
array.

III. NEURAL NETWORK IMPLEMENTATION

Levels L2∼L5 programmed by IGVVA-10 in Figs. 3-6 were
used to implement the 2-layer fully-connected neural network
of Fig. 7(a). The network, which consists of 197 input neurons,
20 hidden neurons, and 10 output neurons, was developed to
implement the recognition task on the handwritten digit images
of Modified National Institute of Standards and Technology
(MNIST) dataset. In particular, we trained and tested the
network using MNIST images of size 14x14 to ensure that
the number of weights was consistent with the array size.
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Fig. 7. (a) Sketch of 2-layer fully-connected neural network implemented
for MNIST recognition task. (b) Schematic of encoding scheme used to map
the weights of the neural network into the RRAM array. Each weight W is
achieved by a pair of 1T1R RRAM devices as difference of their conductances
G+ and G−, respectively.

The weights of the neural network were initially trained on
the 60000 images of MNIST train dataset with 64-bit floating
point (FP-64) precision by application of the backpropagation
rule [19]. After the off-line training in software, the weights
were reduced to 9 discrete levels by using an incremental
quantization procedure similar to the one proposed in [20].
This method consists of the iterative execution of 3 operations,
namely (i) weight partition, (ii) group-wise quantization, and
(iii) re-training. Weight partition equally divides the weights
of each fully-connected layer into two groups based on the
error due to the level quantization. The first group with larger
quantization error is subject to quantization to 9 levels, while
the second group with the remaining weights is re-trained
by backpropagation rule to compensate for the accuracy loss
caused by weight quantization. Note that the re-training op-
eration is performed by keeping the quantized weights of the
first group fixed. By repeating this procedure on the re-trained
FP-valued weights, we gradually implemented an incremental
quantization of all the neural network weights, thus achieving
a neural network with 9-level discrete weights.

To map the 9-level weights into the hardware array, we
adopted the conventional differential scheme [10] shown in

Fig. 8. Color plot of standard deviation σW of 9 differential weights obtained
by the difference of the 5 IGVVA-10 conductance CDFs in Fig. 3. Among all
the combinations for each weight, the best configuration is the one exhibiting
the lowest σW (dashed lines).

Fig. 7(b). Each weight W was mapped into a differential pair
of 1T1R RRAM devices, where the sum of positive and nega-
tive currents activated by read voltages with opposite polarity,
respectively, results in a current proportional to W = G+ - G−.
Then, this current is fed as input of a neuron of the next layer
which converts it into a voltage by application of a sigmoid
activation function.

The 9 discrete levels of the weights W were obtained as
differences among the 5 conductance levels in Fig. 3. To
optimize the accuracy of 9 differential conductance weights
within our neural network, we assumed device programming
by IGVVA-10 with the corresponding σG in Fig. 4. The color
plot in Fig. 8 shows the standard deviation of W, σW , of all
the possible configurations to obtain a certain W = G+ - G−,
e.g. W = 0 can be obtained from G+ = G− corresponding to
the five cases along the diagonal while W = 150 µS can be
obtained as either L4-L1 or L5-L2. Thanks to the low σG of
L5 reported in Fig. 4, the lowest σW is found along the upper
row (G+ = L5) and the rightmost column (G− = L5). Note
that this weight mapping approach minimizes imprecision,
however it is not optimal from the viewpoint of the current
minimization. To mitigate the current-induced IR drop in the
array, the interconnect wire resistances should be much lower
than the device resistances [21].

These optimized combinations were selected for implement-
ing the 9 differential weights of the neural network for MNIST
recognition, whose CDFs and corresponding σW are shown in
Fig. 9(a) and Fig. 9(b), respectively. According to the color
plot in Fig. 8, the level CDFs for W = ± 200 µS show
the highest variability as they can be only obtained by the
difference between L5 and L1 which is the level with the
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Fig. 9. (a) CDFs of 9 differential weights calculated by the 5 IGVVA-10
conductance CDFs by using the best weight configuration with the lowest σW

shown in Fig. 8. (b) Standard deviation σW of 9 differential weight CDFs in
(a) as a function of the weight conductance W. σW is minimum for W = 0
because it is obtained by the difference of L5 CDFs exhibiting the smallest
σG as shown in Fig. 4.

highest σG. On the contrary, the central level W = 0 displays
the minimum σW since it is achieved by the difference of L5
levels with minimum σG.

IV. NEURAL NETWORK ACCURACY

After achieving the neural network with 9 differential con-
ductance weights using IGVVA-10, we tested the accuracy of
the neural network on MNIST classification task by presenta-
tion of the 10000 handwritten digits of MNIST test dataset.

Fig. 10 shows the testing accuracy η of MNIST recog-
nition for the 2-layer fully-connected neural network with
the differential weights of Fig. 9(a). The inference accuracy
achieved by IGVVA-10 conductance weight levels (η = 91.5%)
well compares with the software neural network with FP-64

Fig. 10. Testing accuracy η on MNIST test dataset using 9 weight
levels implemented by 3 programming algorithms. IGVVA-10 precision is
comparable with 9 ideal levels and FP-64 performance.

Fig. 11. Testing accuracy η for increasing σW of 9 differential weights
obtained by experimental IGVVA-10 CDFs. Note that η decreases from 91.6%
to 91.5% indicated in Fig. 10 as σW reaches <σW > shown in Fig. 9(b).

weights (η = 93.27%) and after application of the incremental
quantization scheme (η = 91.6%). A similar optimization as
in Fig. 8 was carried out for ISPVA and IGVVA-100, which
show a lower accuracy. Note that the impact of additional
non-idealities such as device non-linearity and interconnect
wire resistances was not addressed in the array-level network
calculations.

Fig. 11 shows the calculated η as a function of σW ,
confirming the accuracy loss with increasing variation under
the assumption that all the 9 differential weights are affected
by the same amount of D2D variability. Note that the inference
accuracy reaches the best calculated performance indicated

Authorized licensed use limited to: UNIVERSIDAD DE VALLADOLID. Downloaded on February 09,2024 at 09:17:19 UTC from IEEE Xplore.  Restrictions apply. 



in Fig. 10 as σW approximates the median of σW corre-
sponding to the differential weight CDFs of Fig. 9(a). Also,
note that even assuming σW = 10 µS, further accuracy drop
from no variation (about 1.67% from FP-64 representation)
to with variation is only 0.35%. These results support the
co-optimization of quantized-weight training and IGVVA-10
as valuable tool to achieve accurate RRAM-based neural
networks.

V. CONCLUSIONS

We studied the MLC programming algorithms of RRAM for
neural network accelerators. IGVVA-10 shows the lowest vari-
ability thanks to the smoother programming characteristics.
A 2-layer neural network is implemented in a 4-kbit RRAM
array with 5 levels programmed with IGVVA-10, showing
91.5% inference accuracy comparable to software accuracy.
The results support the quantized-weight training scheme with
IGVVA-10 and variation optimization for accurate RRAM-
based neural networks.
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