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1. INTRODUCTION

Local algebras at elements were introduced by Meyberg in a nonassociative con-
text [29], and they have also proved to be a very useful tool in the setting of
associative systems, see [14]. In the Jordan setting they were used by Zelmanov as
a minor part of his brilliant classification of Jordan systems [33, 34, 35], and were re-
visited by D’Amour and McCrimmon in [10]. They have played a prominent role in
the structure theory of Jordan systems, mainly due to the fact that nice properties
flow between the system and its local algebras. Thus, D’Amour and McCrimmon
extended a substantial part of Zelmanov’s results to arbitrary quadratic Jordan sys-
tems by making use of local algebras [11]. On the other hand, ad-nilpotent elements
of index at most 3 (here called Jordan elements) play a fundamental role in the
proof of Kostrikin’s conjecture that any finite-dimensional simple nondegenerate
Lie algebra (over a field of characteristic greater than 5) is classical [8, 30]. Jordan
elements are also of great importance in the Lie inner ideal structure of associative
rings [7].

The analogue of local algebras for Lie algebras was introduced by the second
two authors and A. Ferndndez Lépez in [13]. They showed that it is possible to
attach a Jordan algebra to any Jordan element of a Lie algebra. Since their in-
troduction, these Jordan algebras have proven to be very useful: they inherit good
properties from the Lie algebra itself, such as nondegeneracy [13], strong prime-
ness [16] and even local finiteness [20], so the structure theory of Jordan systems
can be transferred to the original Lie algebra. For example, in [15] the authors
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revisited the celebrated paper of Zelmanov [32] by using Jordan algebras of Lie al-
gebras. Moreover, Jordan elements have been used as tools in the study of infinite-
dimensional Lie algebras. Indeed, they are important in the recent description of
simple, infinite-dimensional, locally finite and locally nondegenerate Lie algebras
with Jordan elements, see [20, Theorem 1], and A. Baranov and J. Rowley gave
a characterization of infinite locally finite simple diagonal Lie algebras in terms of
inner ideals, which are closely related to Jordan elements, see [4].

We focus on two types of Lie algebras coming from the associative context: R~
and Skew (R, *) for centrally closed semiprime rings R. For these Lie algebras, we
highlight the recent works [1] and [3]. Our aim is, on the one hand, to describe
Jordan elements of semiprime rings, and on the other hand, to describe the Jor-
dan algebras of Lie algebras of the form R~ and Skew(R, %) for a centrally closed
semiprime ring R at those Jordan elements. We characterize those Jordan algebras
in terms of local algebras of the original ring (in the case of R™) and in terms of
local algebras of the symmetric Martindale ring of quotients of R for the case with
involution.

The first step in this project is to associate a nilpotent element to any Jordan
element. Jordan elements are directly associated to a particular case of nilpotent
derivations, and this has been a topic of interest since the 1960’s. In 1963, I. N.
Herstein showed that any ad-nilpotent element a of index m in a simple ring R
of characteristic zero or greater than n gives rise to a nilpotent element a — A for
some A in the center of R. Moreover, he showed that the index of nilpotency of
such element is less than or equal to |“E! |, see [21, Theorem in page 84]. This
result of Herstein was generalized by W. S. Martindale and C. R. Miers in 1983
([25, Corollary 1]) to prime rings of characteristic greater than n. This time the
nilpotent element has the form a — A for an element A in the extended centroid of
R. Later on, in 1992, this same result was studied by P. Grzeszczuk for the case of
semiprime rings. He showed that any nilpotent derivation in a semiprime ring is an
inner derivation in a semiprime subring of the right Martindale ring of quotients of
R and is induced by a nilpotent element in such subring, see [19, Corollary §].

Since we are interested in Jordan elements, our nilpotent derivations have the
form ad, with adz = 0, so all the previously mentioned results apply directly to
Jordan elements of simple, prime or semiprime rings respectively. Nevertheless, for
the sake of completeness, we include in this paper an alternative proof of the form
of Jordan elements of R~ for semiprime rings R. On the other hand, when dealing
with rings with involution %, apart from the Lie algebra R~ it is natural to study
the Lie algebra of skew-symmetric elements Skew(R, x). The nilpotent derivations
of the skew elements of prime rings with involution were studied in the 1990’s by
W. S. Martindale and C. R. Miers, who showed that if R is a prime ring with
involution of characteristic zero which is not an order in a 4-dimensional central
simple Lie algebra and has some inner derivation ad, with ad] = 0, then there
exists an element A in the extended centroid of R such that either (a — A) = =0
or the involution is of the first kind and al®>/+1 = 0, see [26, Main Theorem].
As far as we know this result has not been extended to semiprime rings yet. In
this paper we prove an analogue of it for Jordan elements of the skew elements
of a semiprime ring, showing that either they have the form a — A with X in the
extended centroid and (a — A)? = 0 or a has index of nilpotency 3 and R satisfies
a generalized polynomial identity.
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These results on Jordan elements make possible to classify the Jordan algebras
at Jordan elements of the Lie algebras of R~ and Skew(R, %) type. For the R~ case
we show the following result:

Lemma 5.1 Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let a € R be a Jordan element. Then there exists a’ in R such that (R™), =
(Ry)T, i.e., the Jordan algebra of the Lie algebra R~ at a is isomorphic to the
symmetrization of a local algebra of the ring R.

For rings with involution we relate the Jordan algebras of the Lie algebras of their
skew elements with local algebras of their symmetric Martindale ring of quotients.

Theorem 5.8 Let R be a centrally closed semiprime ring with involution x
free of 2 and 3-torsion and let a € K := Skew(R,*) be a Jordan element. Let
Q:,(R) be the symmetric Martindale ring of quotients of R. Then there exist two
idempotents e, f € Sym(C(R), ) that decompose Q2. (R) as a sum of three orthog-
onal ideals QF,(R) = eQ;,(R) & fQ5,(R) & (1 —e — f)Q:,(R), and an element
A € eSkew(C(R), *) such that a = ea+ fa+ (1 —e— f)a € K := Skew(Q%,(R), *),
Ko ZKeg @ /C(l,e,f)a and

(1) ’Cea = Keafe)\ = Sym(an(R)eafe)u *)
(ii) K1—e—sya is a nondegenerate Jordan algebra of quadratic form.

(iii) Kya = 0.

In this case we have to resort to QF,(R) to assure that the Jordan algebra of
type (ii) is “complete”; for R, the associated Jordan algebras are just “forms” of
these type. This is due to the element (1 — e — f)a being von Neumann regular
in @Q$,(R) but not necessarily in R, in which all that we know is that (1 —e — f)a
is regular when multiplied by certain central idempotents. Indeed, similar results
could be proved inside the orthogonal completion of R.

In the particular case of prime rings with involution, our result on the Jordan
algebras of Skew(R, *) at Jordan elements gives rise to the next result, which ap-
pears in [9]. Note that it is not necessary to extend R to its symmetric Martindale
ring of quotients.

Corollary 5.9 Let R be a centrally closed x-prime ring with involution * free of
2 and 3-torsion and let a € K := Skew(R, x) be a Jordan element. Then we have
one of the next mutually exclusive possibilities:

(i) There exists A € Skew(C(R), *) such that (a — \)?> = 0 and therefore K, =
Ko\ = Sym(Ry-x, *).
(i) a® =0, a® # 0 and K, is a Clifford Jordan algebra.
(i) a € Z(K) but a ¢ Z(R) and therefore K, = {0}.

2. PRELIMINARIES

2.1. Throughout this paper and at unless otherwise specified, we will be dealing
with Lie algebras L, rings R and Jordan algebras J free of 2 and 3-torsion. As
usual, [z,y] will denote the Lie bracket of two elements z,y of L, with ad, the
adjoint map determined by z; the product of two elements x,y of R will be written
by juxtaposition, xy; the Jordan product of two elements x,y of J will be denoted
by x ey, with U-operator U,y := 2z o (x @ y) — x2 @ 5. The reader is referred
to [22, 28] for basic results, notation and terminology on Lie algebras and Jordan
algebras respectively. Nevertheless, we will stress some notions and basic properties
of both kinds of algebras.
Any ring R, which can be seen as an associative algebra over Z, gives rise to:
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(1) A Lie algebra R~ with Lie bracket [z, y] := xy — yz, for all z,y € R.

(2) A subalgebra K := Skew(R,x*) of the Lie algebra R~, when R has an
involution .

(3) A Jordan algebra R* with Jordan product z e y := 1(zy + yz), called the
symmetrization of R.

(4) A subalgebra Sym(R, *) of the Jordan algebra R™, when R has an involution
*.

Notice that for every element z € R we can express 2x as a sum of the skew-
symmetric element x — z* and the symmetric element x + z*. Moreover, since our
rings are free of 2-torsion 2z = 0 implies = 0.

2.2. Let V be a module over a ring of scalars ® with % ced, let@Q:V — Pbea
quadratic form on V, i.e., a form such that Q(av) = o?Q(v), and let Q(v,w) :=
Qv + w) — Q(v) — Q(w) be the associated bilinear form on V x V. Let ¢ € V
be such that Q(¢) = 1. Let T : V. — & be defined by T'(v) := Q(c,v), called a
trace form. Then we can define the unitary Jordan algebra Jotd(Q,c) := V as a
®-module with unit 1 := ¢ and product

voyi= ST+ T - Quy)1).

This Jordan algebra is called a Jordan algebra of quadratic form or a quadratic
factor, and satisfies the second-degree equation 22 — T'(z)z + Q(z)1 = 0, see [28,
page 75]. If ® is a field and the quadratic form is nondegenerate, then Jotd(Q, ¢)
is a Jordan algebra called the Clifford Jordan algebra associated to the quadratic
form @, which is simple whenever the dimension of V' is different from 1, see [28,
page 97].

2.3. A ring R is semiprime if for every nonzero ideal I of R we have I? :=
D iy | xi,yi € I} # 0, and it is prime if IJ := {>°, yiz; | ys € I,x; € J} #0
for every pair of nonzero ideals I, J of R. It is well known that a ring R is prime
if and only if xRy # 0 for arbitrary nonzero elements z,y € R, and semiprime if
and only if it is nondegenerate, i.e., if xRz # 0 for every nonzero element x € R.
Moreover, if R is a semiprime ring and z,y € R satisfy zRy = 0 then the ideals
Idg(x), Idg(y) are orthogonal. We will use this property without mentioning it.

2.4. Given an ideal I of R, the annihilator of I in R is the set
Anngp(I):={z € R | 2zl = Iz = 0}.
The annihilator of an ideal I of R is an ideal of R. Moreover, if R is semiprime,
e Amng(I):={z€ R | 21z =0}.
e INAnng(I) =0.

e An ideal I of R is essential (for every nonzero ideal J of R, I N J # 0) if
and only if Anng(7) = 0.

2.5. Let a be an element in a ring R. The additive group (R, +) endowed with the
a-homotope product -,y := xay becomes a ring R® called the homotope of R at a.
The set Ker(a) := {z € R| axa = 0} is an ideal of R*. Meyberg’s local rings are the
quotients R, := R*/Ker(a) for a € R with product given by Z o § := xzay + Ker(a)
([29]). If R has an involution * and a € Skew(R, ) then R, is also a ring with
involution * given by * := —z*.
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In [14] the authors proved that R, is isomorphic to the submodule aRa, endowed
with the product aza.aya := axaya via the mapping ¢ given by & = x + Ker(a) —
aza. In [18] the authors generalized this notion: Let R be a subring of a ring Q.
If a € Q is such that RaR C R then aRa can be regarded as a subring of ¢(Q,).
This ring will be called the generalized local ring of R at a, and will be denoted by
R,.

2.6. Let L be a Lie algebra over a ring of scalars ® such that %7% € ®. We say

that an element a in L is a Jordan element if a is ad-nilpotent of index no greater
than 3, i.e., if adi = 0. Every Jordan element gives rise to a Jordan algebra, called
the Jordan algebra of L at a, see [13]: Let L be a Lie algebra and let a € L be
a Jordan element. Then L with the new product xz e y := %[[w, al,y] is an algebra
such that

Ker(a) :=={z € L | [a,][a,z]] = 0}

is an ideal of (L,e). Moreover, L, := (L/Ker(a),e) is a Jordan algebra. In this
Jordan algebra the U-operator and the triple product have these nice expressions:

17
Uzy = Zadi adz y, forallz,ye L, and
17
{Z,9,z} = —i[x, [adi y,2])]  for all z,y,z € L.

A Lie algebra is nondegenerate if and only if L, is nonzero for every Jordan element
a € L. In particular, L, inherits nondegeneracy from L [13, 2.15(i)].

In the following two paragraphs we will review the concepts of right Martindale
ring of quotients and symmetric Martindale ring of quotients. The theory of rings of
quotients has its origins between 1930 and 1940 in the works of O. Ore and K. Osano
on the construction of the total ring of fractions. Martindale rings of quotients
were introduced by W.S. Martindale in 1969 for prime rings [24]. This concept was
designed for applications to rings satisfying a generalized polynomial identity (GPI
for short). In 1972, A. Amitsur generalized the construction of Martindale rings of
quotients to the setting of semiprime rings ([2]).

2.7. Given a ring R we define a permissible map of R as a pair (I, f) where I is an
essential ideal of R and f is a monomorphism of right R-modules. For permissible
maps (I, f) and (J, g) of R, define a relation = by (I, f) = (J, g) if there exists an
essential ideal K of R, contained in I N J, such that f(x) = g(z) for all x € K. It
is easy to see that this is an equivalence relation. The quotient set Q7 (R) will be
called the right Martindale ring of quotients of R. If R is a semiprime ring Q7 (R)
has a ring structure coming from the addition of homomorphisms and from the

composition of restrictions of homomorphisms, see [5]:

o [LfI+[Lgl=1[INJ[+4l],
b [Irf] ) [ng] = [(Iﬂ])z,fog].

Note that if R is a semiprime ring then the map f : R — Q7 (R) defined by
f(r) :=[R, \r], where A\, : R — R is defined by \,.(z) := ra, is a monomorphism
of associative rings, i.e., R can be considered as a subring of its right Martindale
ring of quotients. Moreover, given any 0 # ¢ := [I, f] € Q,(R) we have that
0 # gqI C R. Therefore every subring S of Q" (R) which contains R is semiprime
because every nonzero ideal of S has nonzero intersection with R.
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2.8. Given a ring R, the symmetric Martindale ring of quotients of R is defined as
Q;,(R) :={q € Q;,(R)| there exists an essential ideal I of R such that ¢/4+Iq C R}.

If R is semiprime then Q2 (R), which is a subring of Q7,(R) containing R, is a
semiprime ring. Moreover, if R is a semiprime ring with involution % then we
can extend * to Q2 (R), and this extension is unique: given ¢ := [I, f] € Q2 (R),
q* :=[U,g] where U := I N I* is an essential x-ideal of R such that qU + Uq C R,
and g(u) := f(u*)* for every u € U.

2.9. The extended centroid C(R) of a semiprime ring R is defined as the center
of its symmetric Martindale ring of quotients. The extended centroid of a prime
ring is a field, and the extended centroid of a semiprime ring is a commutative
and unital von Neumann regular ring. In particular, if R is semiprime, C'(R) is a
semiprime ring without nilpotent elements.

The central closure of R, denoted by R, is defined (see [25]) as the subring of
Q5 (R) generated by R and C(R), i.e., R := C(R)R + C(R), and can be seen as
a C(R)-algebra. Therefore we can consider R contained in R. Moreover, since R
" (R), if R is semiprime then R is also semiprime.
We say that R is centrally closed if it coincides with its central closure R. In
particular, the ring Ris centrally closed with center equal to its extended centroid,
ie., Z(R) = C(R). If R is a centrally closed semiprime ring with involution then
R~ is a Lie algebra over C(R); if in addition R has an involution, then Skew (R, %)

is a Lie algebra over Sym(C(R), ).

contains R and is contained in @

2.10. For a semiprime ring R, given an element A € C'(R) there exists a unique
N € C(R) such ANA = Xand X = NAX (indeed, if A = AN = dpA, X = NVAN
and pu = pAp then N = A2(\)3 = A2 = ). Such unique element )’ will be called
the partner of A. Let us define ey := AX. Then e, is an idempotent of C(R) such
that exA = .

If R has no k-torsion for some k € N then k is invertible in C(R): for k =k-1 €
C(R) there exists k' € C(R) such that kk'k = k, so k(k'k — 1) = 0 and kK’ =1,
thus ¥ = + € C(R). In particular, when R is a semiprime ring with involution
* and no 2-torsion, every element x € R can be expressed as x = x, + x with
zs = 3(z+a%) € Sym(R, *) and 2y, := Hx—a*) € Skew (R, *). We will use this
property without mentioning it.

Moreover, if R is a semiprime ring with involution x and A € Skew(C(R), ) then
A=A = —(ANA)* = A=A and (V) A(=N)* = (VA*X)* = (—\)*, which
imply by uniqueness of X’ that X' = (=\)* € Skew(C(R), *). In this case ey = AN
is a symmetric idempotent of C(R).

Lemma 2.11. Let (R,*) be a semiprime ring with involution free of 2-torsion
and let a € Skew(R,*) and A € C(R) be such that a — X\ is nilpotent. Then
X € Skew(C(R), *). Moreover, if a — u is nilpotent with u € C(R), then \ = pu.

Proof. If a — X\ and a — p are nilpotent elements of R, since they commute, a — A —
(a — p) = p— X is a nilpotent element in the semiprime commutative ring C'(R).
Therefore A = p. Now, if @ — A is nilpotent then (@ — A)* = —(a + A*) is nilpotent
and therefore a + A\* is nilpotent, which implies that A* = —\. ([

The following result is an analogue of the Lie Jacobson-Morozov lemma for the
setting of rings. Its proof will appear in [9, Lemma 2.2].
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Lemma 2.12. Let R be an algebra over a ring of scalars ® and let a,b € R be such
that a®> = 0 and aba = a. Then there exists ¢ € R such that aca = a, cac = ¢ and
c? = 0. Moreover, if R has an involution *, % € ® and a € Skew(R, x) (respectively
a € Sym(R, *)) then ¢ can be taken in Skew(R,*) (respectively ¢ € Sym(R, x)).

Under the conditions of the previous lemma, the elements a and ¢ will be called
twins (as done in [9]).

We will use the following results due to Beidar, Martindale and Mikhalev ([6,
Theorem 2.3.3, Theorem 2.3.9]).

Theorem 2.13. For any semiprime ring R with extended centroid C'(R) and any
at,....an € R, if a1 € 31" ,C(R)a; in R then there exist rj,s; € R with j =
1,2,...,m such that Z;nzl rja1s; 70 and Z;nzl riags; =0 fork=2,...,n.

Corollary 2.14. Let R be a semiprime ring with extended centroid C(R). Let
a;,bi € R fori = 1,2,....n be such that Y ;_, a;xb; = 0 for every x € R. In
addition, suppose that every nonzero ideal contained in Idg(ay) has nonzero inter-
section with Idg(by) (this happens in particular if Idg(a1) C Idg(b1)). Then there
exist \; € C(R) fori=2,...,n such that a1 = ;o \ia;.

Proof. By 2.13, if a1 ¢ Y., C(R)a; there exist rj,s; € R, j = 1,...,m, such
that 327", rjars; # 0 and 3770, rjags; = 0 for k = 2,...,n. In the identity
Z?:l a;xb; = 0 replace x by s;z and multiply on the left by r;. We have

n m m
0= E E rjaiijbi = E rjalijbl,
j=1

i=1 j=1

which implies that the ideal generated by 377" 7ja1s;, I := Idp(3_)~, 7ja15;), is
orthogonal to the ideal generated by b;. Therefore I NIdg(by) is a nonzero ideal
(by hypothesis) of zero square, a contradiction because R is semiprime. O

Proposition 2.15. Let R be a centrally closed semiprime ring free of 2-torsion
with extended centroid C(R). Then for any subset V. C R there erists a unique
idempotent e € C'(R) such that:

(a) ev=w forallveV,

(b) the annihilator in C(R) of V is Anng gy (V) = (1 — e)C(R),

(¢c) the annihilator in R of the ideal generated by V is Anng(RVR) = (1—e)R,
and

(d) the ideal generated by V is essential in eR.

Moreover, when R has an involution * and V C Sym(R,x*) U Skew(R,*), then
e € Sym(C(R), *).

Proof. The first part of the proof follows as in [6, Theorem 2.3.9(i)] with the ob-
vious changes. When R has an involution we can decompose ¢ = e + es with
er € Skew(C(R),*) and e; € Sym(C(R),*). If V C Sym(R,*) U Skew(R, *), for
every v € V we have that ev = v implies exv = 0 because if v € Sym(R, )
then exv € Skew(R, ), while if v € Skew(R, *) then exv € Sym(R, *). Therefore
e € Anngp) (V) = (1 — e)C(R), ie., eye = 0 and €} = exe; = 0, and therefore
e=¢e%= (ex +e5)? = €2 € Sym(C(R), *). O
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3. JORDAN ELEMENTS OF R~

The first part of the following lemma appears in [12, Proposition 3.6(1)]. We
include it here for the sake of completeness.

Lemma 3.1. Let R be a semiprime ring and let a € R be such that ad®(R) C Z(R).
Then ad®(R) = 0. Moreover, if R is free of 3-torsion, then (ad? z)(ad?y) = 0 for
every z,y € R.

Proof. For every x € R we have by the Leibniz Rule that
0 = [ad?(za), 2] = [ad?(2)a, ] = ad?(z)[a, 2],

Therefore 0 = ad?(ad? (x)[a, z]) = (ad3(z))2, which implies, since R is semiprime
and ad?(z) € Z(R), that ad?(z) = 0. Now,
3

0= adizada(v) =3 (3) ac (o) et ) = 30 o)

so (ad? x)(ad? y) = 0 for every y € R. O

Let R be aring and let a € R be such that there exists A € C'(R) with (a—\)? =0
Then it is easy to see that a is a Jordan element of R: if b:=a — A, for all x € R
we have

ad3(z) = ad®_,(x) = ad}(z) = b®z — 3b%xb 4 3bxb® — zb® = 0 (1)

where the calculations are done in the central closure R of R.

The converse was proved in [21, Theorem in page 84] and [7, Theorem 3.2] (in a
more general form) for simple rings, and extended later by Martindale and Miers
[25, Corollary 1] to prime rings and by Grzeszczuk [19, Corollary 8] to semiprime
rings. We include here a simpler proof for the semiprime case.

Theorem 3.2. Let R be a semiprime ring free of 2,3-torsion, and let a € R be a
Jordan element of R~. Then there exists A € C(R), the extended centroid of R,
such that (a — \)? = 0 in the central closure R of R.

Proof. By replacing R by R we may assume, without loss of generality, that R is
centrally closed. By 3.1 for every z,y € R we have that (ad? z)(ad?y) =0, i.e.,

0 = (ad? z)(ad? y) = a®z(ad? y) + ax(—2aad? y) + z(a® ad? y). (2)

We claim that a? = pa + 7 for some p, 7 € C(R). Otherwise, by 2.13 applied to

a?,a,1 € R there would exist ri,s; € R, j =1,...,m, such that Z;nzl rja2sj #£0

and 7", rja*s; =0 for k = 0,1. In formula (2), for each j = 1,...,m replace =
by s;z and multiply on the left by r;. We obtain

m

0= er (aQij(adZ y) + asjz(—2aad’ y) + s;z(a’ad? y)) = Z(rjaQSj)x(adZ y)

j=1 j=1
which says that, for each y € R,

ad?y = a®y + ya® — 2aya € Anng(I)
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where I denotes the ideal generated by 37", rja”s;. For each j = 1,...,m replace
y by s; and multiply on the left by r;. Then by semiprimeness of R we obtain

m m
era2sj = er(a2sj + sja* — 2asja) € I N Anng(I) =0,
— =
which is a contradiction. Therefore, there exist 1, 7 € C(R) such that a® = pa+ 7.
Substituting a? = pa+7 in the expansion of ad? (z) = 0, since a® = (u2+7)a+ur,
we obtain

0 =ad?(z) = a®z — 3a®za + 3aza® — za® = ((u* + 7)a + pr)z — 3(pa + 7)za
+3ax(pa +7) — 2((p? + T)a+ pr) = (1 + 47)ax — (p* + 47)za
= [(MQ + 47’)&, ;C]
for every x € R, which proves that (u? + 47)a is a central element of R, i.e.,
(u? +47)a € C(R).
Set o := u?+47. Now apply 2.10 to get its partner o and the central idempotent
eo- Recall that e,a = «. Define the idempotent f, := 1 — e, and the element
Ai=ena+ %fau, which is central since e,a = o/ (aa) and aa € C(R). Then

(a—)\)2 =(a—eqa— %fa,u)2 = (faa — %fa,u)Q _ fa(az — na+ iug)

1 1 1
:fa(ua""T_Ma_"Z:uQ):fa(T+ZM2):1faa:O- (I

4. JORDAN ELEMENTS OF Skew(R, )

Proposition 4.1. Let R be a ring with involution x free of 2-torsion and let K :=
Skew (R, ). Let a € K be a Jordan element of K. Then, for every x,y € K and
A € Skew(Z(R), *) we have:

(a) a? is a Jordan element of R, i.e., ad>:(R) = 0.

(b) Aa is a Jordan element of R, i.e., ad3,(R) = 0.

(¢) If in addition R is free of 3-torsion, then ad?(z)ad?(y)ad?(z) = 0.

Proof. (a) Let x € R. Then 2z = x + x5 where a3 := x — z* € K and zs :=
z +z* € Sym(R, *). Now, since ad?(z,)a = ad®(x,a) and aad?(z,) = ad?(az,),
we have

3 3

ad)2 (z) = ad» (22) E (i>a ad; (zx + xs)a g <Z_)a ad;, (zg)a” "+

=0 =0

+Z( >a ad? (z,)a +Z( >a ad? (z)a®

fadi(:r )a® + 3aad?(z,)a® + 3a% ad? (z4)a + a® ad? ()

3
a

A2 (zea + axs)a® + 20 ad? (2.0 + axy)a + a® ad? (z.a + azxy) = 0

since z,a + azs € K, so ad?2(R) = 0.
(b) We have

2ad3,(z) = ad3, (22) = X3 ad? (x4 + x,) = N ad?(z,) = N2 ad2 (\z,) =0



10 JOSE BROX, ESTHER GARCIA, AND MIGUEL GOMEZ LOZANO

since Az, € K. So ad},(R) = 0.
(c¢) Since z,y € K we have that z ad?(y)z € K and therefore

0 = ady(z adj(y) #) = 6ad; (z) ad; (y) ad; (). O

The next theorem produces a decomposition of a Jordan element a of Skew (R, *)
for a semiprime ring R with involution *. Essentially, R can be decomposed as a
direct sum of five orthogonal ideals such that a lies in the sum of four of them. This
makes possible to write the Jordan element a as a sum of four elements: a central
element of R (see 4.2 case (i), a “purely” central element of Skew(R,*) (see 4.2
case (ii)), and an ad-nilpotent element of index 3 that again is decomposed as a
sum of two different elements: a Jordan element of Skew(R,*) which is a Jordan
element of R (see 4.2 case (iii)) and a “Clifford” element of Skew(R, %) (see 4.2 case
(iv))-

Note that there are no ad-nilpotent elements of index 2 in Skew (R, *) when R is
a semiprime ring with involution x, see [17, Corollary 4.8].

Theorem 4.2. Let R be a centrally closed semiprime ring with involution x free of 2
and 3-torsion and let K := Skew(R,*). Let a € K be a Jordan element of K. Then
there exists a complete system of five orthogonal idempotents e; € Sym(C(R), ),
i =1,---,5, that decomposes the central closure R = @?:1 e;R as a sum of five
orthogonal ideals in such a way that
(i) eia is a central (skew) element of R,
(ii) eqa is a central (skew) element of Skew(R,x), eaR is a Pl-algebra that
satisfies the standard identity Sy, Skew(esR,*) is an abelian Lie algebra
such that Skew(eaR, *)?> C Z(R),
(iii) there erists a unique \ € ez Skew(C(R),*) such that (eza — e3\)? =0,
(iv) (eqa)® =0, and if e4 # 0 then (eqa)? generates an essential ideal in esR
and R satisfies a nonzero GPI, and
(v) a= 2?21 eia, esa = 0, and the ideal generated by a is essential in @?:1 eR.
Moreover,
(*) if h € Sym(C(R), *) is an idempotent such that ha € Z(Skew(R,*)) then

(61 + 62)]1 = h.

Proof. Note that every idempotent e € Sym(C(R),*) decomposes R as a sum of
two orthogonal ideals R = eR @ (1 — e)R and both eR and (1 — e) R are semiprime
rings with involution with Jordan elements ea (of Skew(eR,*)) and (1 — e)a) (of
Skew((1 —e)R, *)). Moreover C(eR) C C(R) and C((1 —e)R) C C(R).

(1) At this point we are going to decompose a as the sum of a central element
and some other element that we will call b. Given the set T := [a, Skew (R, *)] U
[a, Sym(R, *)], by 2.15 there exists an idempotent « € Sym(C(R), %) such that uy =
y for every y € T and therefore uy = y for every y € [a, R], and Anng(Idg([a, R])) =
(1 —u)R, because Anng(Idr([a, R])) = Anng(Idr(T)). Let eq := 1 —u. We can
decompose

R = €1R@ (1 - €1)R
and then we can work with

RW = (1—-¢)R, KW :=Skew(RM ), and b:= (1 —e1)a,

where R() is semiprime with involution and b is a Jordan element of K). Notice
that [e1a, R] = (1 —u)[a, R] = 0, so e1a is a central (skew) element of R.
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(2) Secondly, we are going to decompose b as the sum of a “purely” central
element of Skew(R,*) and a remainder that we call ¢. We will also prove (x) in
(2.2), and show that c satisfies a polynomial identity of degree 4 over C(R). Given
the set [b, K], by 2.15 there exists an idempotent v € Sym(C(R™M),*) such
that vy = y for every y € [b, KM] and Anngza (Idga (b, KM])) = (1 — v)RM).
Therefore, if we define e3 := (1 — e1)(1 — v) we have that

R = elR@ EQR@ (]. — €1 — CQ)R,
and analogously we can work with
R® :=(1—-e —e)R, K@ :=Skew(R? %), and c:= (1 —e; —e3)a.

Notice that eza is a central (skew) element of Skew(R, *) because [eqa, K] = (1 —
v)(1—e)[a, K] = (1 —0)[(1 —e1)a, (1 —e)K] = (1 —v)[b, KD] = 0.

(2.1) exR is a Pl-algebra that satisfies the standard identity Sy and Skew(es R, )
is an abelian Lie algebra: [eaa, R| generates an essential ideal in esR (because
its annihilator is zero) and therefore given any y € esR there exists 0 # 2z €
Ide, r(y) N1de,r(e2(a, R]). Moreover, since eaR is semiprime there exists a *-prime
ideal I, of eaR such that z & I,, see [27]. In particular eza € Z(Skew(R/I,,*))
since [eqa, K] = 0, but eza ¢ Z(R/I,) since [esa, R] C I, implies z € I,, a
contradiction. This implies by [17, Proposition 4.6] that the involution of R/I, is
of the first kind, R/, is an order in a simple algebra @ with dimy)(Q) < 4, and
Skew(R/I,,*) is an abelian Lie algebra. In particular R/I, is a Pl-algebra that
satisfies the standard identity S4. Now, since the intersection of all I, in these
conditions is zero (see [27]), we have that [Skew(eaR, *), Skew(eaR, *)] C (), Ia =0
and hence Skew(eaR, ) is an abelian Lie algebra. Moreover, esR is a subdirect
product of Pl-algebras that satisfy the standard identity .S; and hence es R satisfies
Sy.

Now, if k € Skew(esR,*) and = € eaR we have that 20 = zj + x5, where
xr = x —x* € Skew(eaR, %) and xj, = x + a* € Sym(eaR, x) and

2k%, x] = [k?, 2z] = K[k, 2z] + [k, 2z]k = k[k, z4] + [k, za]k = (K2, 2]
= ki2l‘h — l‘hk‘2 = k‘th + kxpk — kxpk — xhk;2 = [k‘, kxy, + l‘hk] =0
because kxy + xpk € Skew(eaR, ). Therefore [k?,eaR] = 0 and k? € Z(eaR) C
Z(R).

(2.2) If h € Sym(C(R), *) is an idempotent such that ha € Z(Skew(R, %)) then
(1 —e1)h € Annga (Idza) ([b, KM]) = (1 — v)R and therefore (1 —e;)h = (1 —
v)(1 —e1)h = eah, which implies that h = e;h+ (1 —e1)h = (e1 + e2)h, proving ().

(2.3) There exist u,y € Skew(C(R®), %) and 7 € Sym(C(R®),*) such that
¢ = uc® +7c+7: For every x € R, cad?(z) + ad?(x)c = ad?(cx + zc) and, since
x =y + x, for some x € Skew(R?), ) and some z, € Sym(R?), ) (see 2.10),

cad?(x) 4+ ad?(z)c = cad®(z + x,) + ad? (xp + z4)c = cad®(z,) + ad®(z,)c

= ad?(czs 4 25¢) =0,
so we have
0 = cad?(z) + ad®(z)c = 'z — 23 xc + 2cac® — xct. Q8]

Now, by 4.1(a) and 3.2 applied to the Jordan element ¢ of R®) there exists
a € C(R®) such that (2 — a)? = ¢* — 2ac® + a? = 0. So if we substitute ¢* in
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formula (I),
0=c'z — 28%c + 2cxc® — zc* = 20z — 20x® — 23 we + 2cac.

Then, by 2.14, since Idge (c?) C Idgr(c) there exist u, 7,7 € C(R®) such that
c® = uc?® + tc + . Finally, if we decompose pt = s + fik, T = Ts + Tk, ¥ = Vs + V&
with pus, 7s,7s € Sym(C(R®), %) and pg, 7, v € Skew(C(R®?), %) (see 2.10) then
we can decompose pc? +7c+y in its symmetric and skew parts. Its symmetric part
is psc? +1rc+y, and its skew part is ppc? +7,¢+k, but since ¢3 is skew-symmetric,
e = upc? + 74¢ + yx. For convenience let us rename py, as p, 7, as 7 and 7y as 7.

(3) The elements p and « make it possible to decompose ¢ as an element of type
(iii) and some other element that we will call d, see (3.1). Initially d® = 7d but
indeed d® = 0, see (3.3).

(3.1) For every A € Skew(C(R®), %) there exists oy € ey Skew(C(R?), *) such
that

ex(c—an)? = (exc —exay)? =0,
where the idempotent ey is defined in 2.10: By 4.1(b), Ac is a Jordan element
of R® and therefore N'\c = eyc is again a Jordan element of R(®). Now, by
3.2 and 2.11 there exists fy € Skew(C(R®), ) such that (exc — 31)? = 0. So
0 = ex(eac — Br)? = (eac — exBr)?, and ay = exfBy € e Skew(C(RP), %) is the
desired element.

(3.2) There exist an idempotent w € Sym(C(R®), %) and o € Skew(C(R?), %)
such that ¢ = we+ (1 —w)e with (we —wa)? = 0 and (1 —w)e? = (1 —w)7e: Given
p € Skew(C(R®), %), by (3.1) there exists a,, € e, Skew(C(R?),*) such that
c=euc+(1—ey)c with (e c—ayc)? = 0. If we multiply formula ¢ = pc? + e+
of (2.3) by 1 — e, we get

(1=ew)e)® = (1 —eu)Te+ (1= eu). (1)

Let us consider § := (1 —e,)y € Skew(C(R®),*). By (3.1) there exists a; €

es Skew(C(R®)), %) such that ¢ = esc + (1 — e5)c with (esc — asc)®> = 0, and
multiplying formula (IT) by 1 — es we get

(1—eun)(1—es)e)® = (1 —eu)(1 —es)Te. (I11)

Note that es, e, are two central orthogonal idempotents such that ¢ = e,c + esc +

(1—e,—es)c with (e,c—a,)? =0, (esc—as)? = 0and (1—e,—es)c = (1—e,—es)TC

Putting w = e; + ¢, and a := «a, + as we have that (wc — @)® = 0 and
(1 —w)c® = (1 —w)7e. Since w € Sym(C(R®), %), it is orthogonal to e; and ey
and we = wa.

We can decompose R as

R=eiR®esROwR P (1 —e; —es —w)R,
so we can do as before and work with
R® = (1—-¢ —es—w)R, K® :=Skew(R® «), and
d:=(1—-e1—ea —w)a=(1-w)e
Notice that d® = 7d and (1—w)7 € Sym(C(R®)), x). For convenience let us rename
(1—w)T as 7.

(3.3) Let us prove that d®> = 0: If 7 = 0 there is nothing to prove; otherwise

consider e, so that d = e,d + (1 — e, )d with (1 —e;)d® = 0 and e,d® = 7d with 7
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an invertible element in e, R®). If we multiply formula (I) by (1 —e; — ea — w)e,
and substitute e,d> = 7d we get

0=(1-e; —ey—we,(ctr —2c%xc + 2cxc® — xc?)

= e (d*z — 2d3xd + 2dxd® — zd*) = 7[d?, ).
So 7d? € Z(R®)) and since 7 is invertible in R®), e d? € Z(R®)). Let us denote
¢ :=e,d> € Z(R®) c C(R®). Now, since e,d is a Jordan element of e, K3 we
have that, for every z € K3,

0=ad} ,(z) = e,(d®z — 3d°xd + 3dzd® — xd®)

= &(dx — 3xd + 3dx — xd) = 4€[d, x].

So ¢d € Z(R®)) c C(R) and therefore egd € C(R), which implies by (*) that
e¢d = 0. Therefore 0 = &d = e, d>.

(4) Now we decompose d as two elements, one of type (iii) and the other one of
type (iv). There exists an idempotent w’ € Sym(C(R®)), %) such that d = w'd +
(1—w')d with (1—w')d? = 0, w'd® = 0: Given d?, by 2.15 there exists an idempotent
w' € Sym(C(R®)), ) such that w'd> = d? and Annge) (Idge (d?)) = (1 — w')R.
Therefore,

R® =w'R® @ (1 —w)R®
and d = w'd + (1 — w')d with (1 —w’)d*> = 0 and w'd® = 0.
(4.1) If w'd? # 0 then the local algebra associated to w’d? is abelian and therefore

R satisfies a nonzero GPI: since 0 = ad?,,(K®)) = 6w’ d* K(®)d? and R is free of 2
and 3-torsion, w'd?K®)d? = 0. Now, for every x € R®),

w'd*(x —2*)w'd® =0, ie., wdzw'd® =w'd*z*w'd>.
Let us consider the local ring RS’,) g2 = Ryrgz of R®) at w'd?, which is a semiprime
ring such that
w'd? (zw' d*y)w'd? = w'd* (zw'd*y)*w'd? = w'd*(y*)w'd* (x*)w' d?
= w' d*yw' d>zw'd>.
Then R,/ 42 is a semiprime commutative ring, hence a PI ring and therefore R
satisfies the nonzero GPI

w' dzw' Pyw' d? = w' dPyw dPzw'd?.

(5) Finally we gather all the previous information together. Take the orthogonal
idempotents ej, ez, e3 := (1—e; —eg)w+(1—e1—es—w)(1—w'), e4 := (1—e1 —ea—
w)w’. We have that e; + e3 + e3 + e4 = 1. Given the set {a}, by 2.15 there exists
an idempotent e € Sym(C(R), ) such that ea = a and Anng(Idg(a)) = (1 — e)R.
Define é; := eeq, é3 := eeq, é3 := ee3, é4 := eeyq and é5 := 1 — e and decompose

5
R= @ Ré;.
=1

Notice that this decomposition satisfies the claims of the theorem:
e éqa is central in R by (1),
e éoa is a central (skew) element of Skew(R,*), éaR is a Pl-algebra that
satisfies the standard identity S4, Skew(éaR, %) is an abelian Lie algebra
and Skew(é;R, %)% C Z(R) by (2),
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o for the skew element \ := wa, (é3a —é3))? = e(eza — \)? = e(we — wa)? +
e(1—w')d?> =0 by (3) and (4),

o é40° = ew'd® = 0, and if é4 # 0, é,a% = é4d? generates an essential ideal of
é4R because it has zero annihilator, and R satisfies a nonzero GPI by (4),

2

and
e a = ea = é1a + éza + éza + é4a, ésa = 0, and the ideal generated by a is
essential in @?:1 Ré;. O

If R is a centrally closed *-prime ring and a is a Jordan element of Skew(R, ),
since the idempotent es obtained in 4.2 belongs to the annihilator of Idg(a) in R,
which is a #-prime ideal of R, we get es = 0. Hence in this context we obtain the
four mutually exclusive possibilities of the next corollary.

Corollary 4.3. Let R be a centrally closed x-prime ring with involution * free of
2 and 3-torsion and let K := Skew(R, ). Let a € K be a Jordan element of K.
Then we have four mutually exclusive possibilities:

(i) a € Z(R).
(ii) a € Z(K)\Z(R), R is a Pl-algebra and Skew (R, *) is an abelian Lie algebra.
(iii) There exists A € Skew(Z(R),*) such that a — X\ is nilpotent of index 2.
(iv) a® =0, a®> # 0 and R satisfies a nonzero GPL.

5. JORDAN ALGEBRAS OF LIE ALGEBRAS ARISING FROM ASSOCIATIVE RINGS

In this section we are going to describe the Jordan algebras associated to the Jor-
dan elements of the Lie algebras R~ and Skew (R, ) for a centrally closed semiprime
ring R (with involution x) using the characterizations of these elements given in 3.2
and 4.2.

Lemma 5.1. Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let a € R be a Jordan element. Then there exists o’ in R such that (R™), =
(Ro)T, i.e., the Jordan algebra of the Lie algebra R~ at a is isomorphic to the
symmetrization of a local algebra of the ring R.

Proof. Tt is enough to consider ¢’ := a — A with A as given in 3.2, which satisfies
(a’)? = 0. Then the map ¢ : (R™), — (Ra)T given by ¢(%) := 7 is an isomorphism
of Jordan algebras: ¢ is well defined, since if # = 0 then 0 = [a, [a, z]] = [/, [d/, z]] =
—2a’za’ and therefore ¢(Z) = 0. It is clear that ¢ is a C(R)-linear map. Now

6( o7) = 50([e. o4l = 5ol @) = (@) o 6(7)

Clearly ¢ is onto, and if ¢(F) = 0 we have 0 = a’za’ = [d/,d’,z]] = [a, [a,2]] and
therefore 7 = 0. O

Now we turn to the description of the Jordan algebras at Jordan elements of
the skew elements of semiprime rings with involution. First we need some previous
results.

Lemma 5.2. Let R be a semiprime ring with involution * free of 2-torsion, and
let h € Sym(R,*) and k € K := Skew(R, x) be such that hKh = hKk = 0 and h
generates an essential ideal in R. Then k = 0.
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Proof. Note that kKh = (hKk)* = 0. Let z,y € R and decompose = = xj + x4
and y = yr + ys where x, yr € K and z4,ys € Sym(R, *); then

hxkyh + hykxh = hxskysh + hyskxzsh = h(xskys + yskxzs)h =0

since zskys+yskrs € K and hKh = 0. Therefore by 2.14, since Idg(hzk) C Idg(h),
there exists A, € C'(R) such that

hxk = Azh.

Now suppose that € Sym(R, ). Then zkx € K so hxkxzk = 0 by hypothesis.
But 0 = (hzk)zk = A\ hak = A2h, and since h generates an essential ideal in R,
A2 =0s0 A, =0 and hak = 0. Therefore 2hRk = h Sym(R, *)k + hKk = 0 and
we get £ = 0 by using again that h generates an essential ideal of R and that R is
free of 2-torsion. O

In the following proposition, although the results are valid for R, some of the
computations are actually carried in R.

Proposition 5.3. Let R be a semiprime ring with involution * free of 2 and 3-
torsion and let a € K := Skew(R, *) be a Jordan element such that a® = 0 and a*
generates an essential ideal of R. Then

(a) For every k € K we have that aka® = a*ka.

(b) For every k € K we have a*ka® = 0.

(¢) Rz is a semiprime commutative ring.

(d) For every x € R there exists a unique A, € Sym(C(R), x) such that a*za® =
Aza%.  Moreover, if ey = A, is an idempotent then there exists c, €
Sym(R, ) such that ¢, = eycy, eza’cya®> = ega?, cya’c, = ¢z, 2 =0

and eza = e, (a’cya + acga?).
In addition, if Q := Q% (R) is the symmetric Martindale ring of quotients of R, I
is an ideal of R and we denote A; := {\, € C(R) | 3z € I with a’za® = \a®},
then
(e) Ay is a subring of C(R). Moreover, if C(R)I C I then Ay is a von Neu-
mann reqular ring.
(f) If I is an essential ideal of R then Arq =0 implies ¢ = 0 for every q € Q.

Proof. (a) Since a is a Jordan element, for every k € K we have that 0 = ad? (k) =
a®k — 3aka + 3aka® — ka®. Therefore, since R is free of 3-torsion and a® = 0,
aka? = a’ka.

(b) For every k € K, by (a), a’ka® = aka® = 0.

(c) Let & € R,z be such that Z o R,z o # = 0. Then for every § € R,2 we have
that 0 = & o §j o & and so a?za?ya®za® = 0 which implies, since R is semiprime,
that a?za®? = 0 and & = 0, i.e., that R, is a semiprime associative ring. Moreover,
given Z,9 € R,2 we have that o — §o & = (za’y — ya’z) 4+ Ker(a?) = 0 because
ra’y — ya’x € K and, by (2), it is contained in Ker(a?).

(d) By (c), for every z,y € R we have that

a*va*ya® = a*ya*za®. (D)
Therefore by 2.14, since Idg(a?wa?) C Idgr(a?) we have that there exists A, € C(R)
such that

a’za® = \,a®. (D)
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Notice that ), is unique for every x € R because a? generates an essential ideal of
R. Since a?Ka? = 0 we also obtain A, = \* € Sym(C(R), %) by taking involutions
in formula a?za? = \za?.

Now suppose that a?za?

= eya® where e, := )\, is an idempotent of C(R). Then
(epa?)x(eza?) = epa’za® = (e,)%a® = eya?,

and since e,a? is a nilpotent element of index 2, by 2.12 there exists ¢, € Sym(f%, *)
such that ¢2 = 0, (ega?)cy(eza?) = eza® and cy(eza?)c, = c,. Moreover ¢, =
ce(eza?)cy = ex(cu(ega?)c,) = egc,. Finally, for every k € K,

e (a2cza + acpa® — a)ka2 = e, (czzcgcotlm2 + acya’ka® — aka2)
= e, (a’cpa’ka + 0 — aka?)
= ey(a*ka — aka®) = 0.

2 —a € K, by 5.2 we have e;(a’cza + acya? — a) = 0

Therefore, since ac,a + acza
and eya = e, (a’cya + acya?).

(e) Let us consider now the symmetric Martindale ring of quotients @ := Q2,(R)
of R and an ideal I of R, and denote A; := {\, € C(R) | 3z € I with a’za® =
Aza?}. Given )\, Ay € Ay there exist x,y € I such that a’xa? = \za? and a’ya® =
Aya?. Then

(Ae +\y)a? = a’za® + a’ya® = a®(z + y)a® = \pyya?,

Az - Ap)a® = A\za’ya® = a’za’ya® = Aya2,a°.

Therefore A\, + Ay = Apyy € Ap and A\ - Ay = Ayo2y € A7, Now, if A\, € Ay,

a’ra® = \;a? and for the unique element A associated to A, in 2.10 we have that

Noa? = MM Aa? = (\,)2a%wa? = a*((\,)?2)a?

and X, € Ay since C(R)I C I.

(f) Suppose that I is an essential ideal of R and take ¢ € Q such that Arqg = 0.
For such ¢ there exists an essential ideal J of R such that Jg + qJ C R. Let
yelINnJandt :=yqort:=qy Given any z € R and z € I we have that
a’za’xrt = )\yazxt = azx)\yt = 0. Therefore, since z is arbitrary in the essential ideal
I, the ideal generated by a’xt is a nilpotent ideal of R and hence Idg(a?zt) = 0.
Now a?xt = 0 for every x € R implies that the ideal generated by ¢ is orthogonal
to the ideal generated by a2, which is essential, so ¢ = 0. Finally, since ¢ = qy or
t = yq for an arbitrary y in an essential ideal of R, ¢ = 0. O

Proposition 5.4. Let R be a centrally closed semiprime ring with involution
free of 2 and 3-torsion and let a € K := Skew(R, *) be a Jordan element such that
a® =0 and a® generates an essential ideal of R. Let Q := Q2,(R) be the symmetric
Martindale ring of quotients of R. Then:

(a) Q is a semiprime ring with involution * such that a is a Jordan element of
Skew (Q, *), a® = 0 and a® generates an essential ideal in Q.

(b) There exists ¢ € Sym(Q, *) such that a®ca® = a?, ca’c = ¢, ¢ = 0 and
a = a’ca + aca®. In particular a® is a von Neumann regular element of Q.

(¢) The Jordan element a is von Neumann reqular. In particular, the Jordan
algebra Skew(Q,*), at the Jordan element a is unital with unit element
1, := ac+ ca.
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(d) For every x € Skew(Q, ) there exists a unique p, € Sym(C(R),*) such
that axa = pga.
(e) Qg2 is isomorphic to C(R).

Proof. (a) By 2.8, @ is a semiprime ring with involution %. Let us prove some
properties:

(1) Let k € Skew(Q,*) and let I be an essential x-ideal of R such that Ik +
kI C R. By 5.3(d), given any y € I there exists A\, € Sym(C(R),*) such that
a*ya? = \,ya?, therefore if y = ys +y), where y; € Sym(R, *) and y, € K, by 5.3(b),
then

Nya’ka® = (a®ya®)ka® = a®(ysa’k)a® = a®(ysa®k)*a® = —a’ka’ysa®

= —a’ka’ya® = —\,a’ka’®.

Thus Ara®ka? = 0, which implies by 5.3(f) that a®ka® = 0.

(2) Let us prove that a is a Jordan element of Skew(Q), x): Since R is a subring
of Q, a® =0 (in Q). Let k € Skew(Q, *) and let I be an essential *-ideal of R such
that Ik + kI C R. By 5.3(d), given any y € I there exists A\, € C(R) such that
a*ya? = A\ya®. Therefore, by (1) and 5.3(a),

Nya’ka = a*ya’ka = a*(ya’k + ka’y*)a = a(ya’k + ka’y*)a® = aka’y*a®

= aka’ya® = )\yaka2.

Thus Ar(aka — aka?) = 0, which implies, by 5.3(f), that a?ka = aka®. Finally,
for every k € Skew(Q, ) we have

ad? (k) = a®k — 3aka + 3aka® — ka® = 0

and hence a is a Jordan element of Skew(Q, ). Furthermore, given a nonzero ideal
I of Q, I N R is nonzero. Therefore I N RN Ra?R # 0 since Ra’R is an essential
ideal of R, which implies that Qa?Q is an essential ideal of Q.

(b) By 5.3(e) we know that Ag := {\ € C(R) | 3z € R with a’za® = \a?}
is a von Neumann regular subring of C(R). Now consider a maximal family of
orthogonal idempotents {e;};cr of Ag.

(b1) J := D, Re; is an essential ideal of R: First notice that given any A € Ar
such that Ae; = 0 for every ¢ € I we have that A = 0, since otherwise, since Ap is
von Neumann regular, there exists \' € Ag such that A\ is an idempotent of Agr
orthogonal to every e;, a contradiction. Now, if z € R satisfies zJ = 0, then zRe; =
0 for every i € I and therefore e;z = 0. Moreover a?RzRa%e; = a?Rze;Ra® = 0,
which implies, since by 5.3(d) a?RzRa? = Aa? with A C C(R), that Ae;a? = 0
and hence that Ae; = 0 for all e; since a? generates an essential ideal in R. Hence
A = 0. Therefore a2RzRa® = 0 and, since a? generates an essential ideal, a?Rz = 0
(because it is orthogonal to the ideal generated by a?) and again z = 0. Therefore
J is an essential ideal of R.

(b2) Let us consider f : ,.; Re; — R defined by f(D aje;) = > aici, where ¢; is
a twin of e;a® as given in 5.3(d). Then ¢ := [@,.; Re;, f] € Q satisfies a?ca® = a?,

since by construction ce; = ¢; and therefore (a?ca? — a?)e; = 0 for each e;, so
(a?ca? — a®)I = 0 with I being essential. Similarly ¢ = 0, ca?c = ¢ € Sym(Q, *)

and a = a?ca + aca?.
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(¢) Notice that for any T € Skew(Q, *), we have that 1,0 T = [[ac + ca,a|,z| =T
because ad?([[ac + ca, al, z]) = ad?(x), since
[a, [a, [[ac + ca, a], 2]]] = [a, [[a, [ac + ca, a]], 2]] + [a, [[ac + ca, a], [a, z]]]

=) [a, [[a, [ac + ca,a]], z]] = [la, [ac + ca, a), [a, z]]]

=) [a, [a, ],
where 1) [a, [[ac + ca, a], [a, z]]] = 0 by [13, Lemma 2.3(iv)], ¥ because a is Jordan
and @ [a, [ac + ca, a]] = a follows from (b).

(d) Given any t € Skew(Q, *) we have
ata = (a*ca + aca®)t(a’ca + aca®)
= a’cata’®ca + aca®ta’ca + a’cataca® + aca’taca®
= a*(cat + tca)a*ca + 0+ 0 + aca®(cat + tca)a®
= ,uta2ca + u,gaca2 = Ua

because a® = 0, a? Skew(Q, *)a® = 0, a’taca® = a*(tac)*a® = a’cata® and there
exists a unique p; € Sym(C(R),*) such that a®(cat + tca)a® = pua® by (a) and
5.3(b),(d) taking @ as the ring of the statement.

(e) Let us consider the homomorphism of rings ® : C(R) — Q2 defined by
d(N) = X, where ¢ is as given in (b). Let us prove that ® is an isomorphism:
if ®(\) = 0 then 0 = Ac and therefore 0 = a?(\c)a? = Aa?, which implies that
a?R)\ = 0 and therefore ) is orthogonal to the ideal generated by a2, i.e., A = 0.
Finally, given any & € Q,z, by (a) and 5.3(d) taking @ as the ring of the statement,
we have that a2za® = A,a? = a?(\yc)a® and therefore & = Ayc = ®(A,) in Qu2. O

Corollary 5.5. Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let Q3 (R) be the symmetric Martindale ring of quotients of R. Then:

(1) If a € R is a Jordan element of R then a is a Jordan element of Q%,(R).
(2) If % is an involution on R, K := Skew(R,*) and a is a Jordan element of
K, then a is a Jordan element of Skew(Q2,(R), *).

Proof. (1) If @ is a Jordan element of R then by 3.2 there exists o € C(R) such
that (a — «)? = 0. Therefore a is a Jordan element of Q,(R).

(2) Following the notation of Theorem 4.2 there exist four orthogonal idempo-
tents {e;}%_; contained in Sym(C(R), *) such that a = eja + eza + eza + e4a and:

(2.1) e;a € C(R) and therefore e;a € Z(Q3,(R)) and e;ja is a Jordan element of
Skew(Q3,(R), *) (in fact it is a Jordan element of Q?,(R)).

(2.2) esa € Z(Skew(R, %)), ea R is a PI-algebra that satisfies the standard identity
S4, and Skew(eaR, %) is an abelian Lie algebra. Let us prove that the Lie algebra
Skew(e2Q%,(R), *) is abelian too: Since e2Q3,(R) is the Martindale symmetric ring
of quotients of e R, we have that e2Q%,(R) is a general left (or right) ring of quo-
tients of e2 R, see [23, Definition 13.10 and Proposition 14.7]. Therefore, since ea R is
a PI-algebra, by Rowen’s Theorem ([31, Theorem 2]), 0 # [p, g] € Skew(e2Q%,(R), *)
implies that there exists A € Z(e2R) C C(R) such that Ap, A\qg € Skew(e2R, %) and
Alp, q] # 0. Pick a partner X' € Z(R) of A as in 2.10. Then A[p, q] = AN A[p,q] =
N[Ap, Ag] = 0, a contradiction. Therefore Skew(e2Q5,(R), %) is an abelian Lie alge-
bra and eza is a Jordan element of Skew(Q3,(R), *).
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(2.3) There exists a unique A € Skew(C(R), *) such that (ega—e3\)? = 0 and eza
is a Jordan element of Skew(Q2,(R),*) (in fact, it is a Jordan element of Q% (R)).

(2.4) If eqa # 0 then (eqa)® = 0 satisfies 5.4(a) and therefore it is a Jordan
element of Skew(Q?2 (R), *).

In conclusion a = 2?21 e;ja is a Jordan element of Skew(Q?,(R), *). O
The next result is a generalization of [13, Theorem 3.3].

Proposition 5.6. Let R be a centrally closed semiprime ring with involution x
free of 2 and 3-torsion and let a € K := Skew(R,*) be a Jordan element. Let us
suppose that there exists X € Z(R) such that (a — \)?> = 0. Then K, = K,_ =
Sym(Rg—», *).

Proof. Clearly, by construction K, = K,_. Moreover, if we denote b := a— A then
the map ® : K; — Sym(Ry, *) defined by ®(Z) := Z is an isomorphism of Jordan
algebras:
e O is well defined: If T =y € K}, then x — y € Ker(b) and therefore 0 = [b, [b,z —
y]] = —2b(z — y)b (because b? = 0), which implies that 7 = § € R,. In addition, if
x € K then (Z)* = —z* = 7 and therefore ®(z) € Sym(Ry, *).
e & is a homomorphism of Jordan algebras:

(1) ®@+y) =@ +y) =c+y=2+y

(2) ®(Toy) = D([z,[b,y]]) = xby — xzyb — byx + ybx = xby + ybxr =T ey
because zyb + byz = 0 since b2 = 0.
e ® is an isomorphism: If ®(Z) = 0 then 0 = —2bxb = [b, [b, z]] and therefore
T =0 € K;. Now let # € Sym(Ry, *). Then Z = #* = —z* and hence bzb = —bx*b

and x + z* € Ker(b). Therefore ®(£52) = 2=2° = 13 4 L(7)* = 7. O

Proposition 5.7. Let R be a centrally closed semiprime ring with involution x
free of 2 and 3-torsion and let a € K := Skew(R, *) be a Jordan element such that
a® = 0, a® generates an essential ideal and there exists ¢ € Sym(R,*) such that
a’ca® = a?, ca’c = ¢, ¢ = 0 and a = a’ca + aca®. Then K, is a nondegenerate

Jordan algebra of quadratic form.

Proof. Note that K, is a unital Jordan algebra with unit element 1, := ac + ca
(see the proof of 5.4(c)).

The map (-,-)' : K x K — Z(R)a defined by (z,y)’ := a{z,y,a}la = arya® +
a’yxa is bilinear and symmetric: By the proof of 5.4(d), a{z,y,a}a € Z(R)a, and
it is bilinear. Moreover, by 5.3(a)

a{x,y,a}a = axya® + a*yzra = alz,yla® + a*[y, z]a + ayza® + a*zya
= a[z,y]a® + aly, x]a® + ayza® + a*zya
=0+ a{y, z,a}a.

(1) The map (-,) : K, x K, — Z(R) defined by (Z,7) = pzy where pigy is
the unique element of Z(R) that satisfies a{z,y,a}a = pgya is a nondegenerate
symmetric bilinear form on K,:

In order to prove that the map is well defined let us show that, if z € K, then
[a,[a,z]] = 0 if and only if a?z + za® = 0 or, equivalently, if and only if axa = 0:
If [a,[a,x]] = 0 then 2aza = a?z + za?, so if we multiply by a on the left we get
2a’ra = ara® and hence by the proof of 5.4(d) it is 2uza? = uya?, which implies,
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since a? generates an essential ideal, that p, = 0, i.e., aza = 0 and therefore
a’z 4+ za®? = 0. Now, if a®z 4+ za? = 0, multiplying by a on the left we get that
aza® = 0. Therefore p,a*> = 0 and p, = 0. Then aza = 0 and |a, [a,z]] = 0.

Now let y € K be such that [a,[a,y]] = 0. Hence aya = 0 and a?y + ya? = 0.
Thus

a{z,y,ata = axly, ala + axaya + ala, y|ra + ayazra = azxly, ala + ala, ylza
= az([y, a], a] + azaly, a] + [a, [a, y]]za + [a, y]laza
= azaly, a] + [a,ylaza = —aza®y — ya®za = —aza(a®y + ya?) = 0.

Therefore, since (-,-)" is bilinear and symmetric, if ¥ = z then (a,7y) = (@,z) and

(g,a) = (a,y) = (a,z) = (z,a), which implies that this form is well defined and
therefore bilinear and symmetric.

Finally, if there exists b € K,, such that for every T € K, we have that (b,Z) = 0,
then b = 0: By hypothesis a?bza + azba®? = 0 and if we multiply by a we get
a’zba® = 0 for every z € K. Now, a?Ka® = 0 by 5.3(b) and, since we also have
a’K (ba® + a®b) = 0, by 5.2 ba? + a*b = 0 and hence [a, [a, b]] = 0.

(2) For every x € K we can define T(Z) := (T,1,). Note that (Z,1,) =
(T, ac+ ca) = p, where pu, is the unique element of Z(R) such that aza = pya:

(z,ac+ ca)’ = az(ca + ac)a® + a*(ca + ac)za = azaca® + a*caza
= ug(aca® + a’*ca) = pga.

In particular T(1,) = 1 because figeica@ = a(ac + ca)a = a’ca + aca® = a.

(3) For every A € Z(R) we have that A\* = A. In particular K is a Z(R)-
submodule of R: if this is not the case there exists 0 # X € Skew(Z(R), *). Since we
know that a?Ka? = 0 by 5.3(b), we have that Aa?(Sym(R,*)\)a? C Aa’Ka? = 0.
Hence Ma?RMa? = 0 and so Aa? = 0. Since a? generates an essential ideal this
implies A = 0.

(4) Now, W :={z € K, | T(Z) = 0} is a submodule of K, such that

K, =W & Z(R)1,

because for any T € K, we have that T = (T — T'(z)1,) + T(x)1,.
(5) f v,w € W, then T oW = puyyl,: since ava = awa = 0 we have

[a, [a, [[v, ], w]] = a*vwa + awva® = af{w,v,a}a = flwwa = pwsla, [a, ac + ca)].

Therefore K, is a nondegenerate Jordan algebra of quadratic form associated to
the nondegenerate symmetric bilinear form given in (1). O

Theorem 5.8. Let R be a centrally closed semiprime ring with involution * free
of 2 and 3-torsion and let a € K := Skew(R, x) be a Jordan element. Let Q3 (R)
be the symmetric Martindale ring of quotients of R. Then there exist two idem-
potents e, f € Sym(C(R),*) that decompose Q. (R) as a sum of three orthogo-
nal ideals Q2 (R) = eQ:,(R) @ fQ5,(R) ® (1 —e — f)Q2,(R), and an element
A € eSkew(C(R), x) such that a = ea+ fa+ (1 —e— fla € K := Skew(Q?,(R), *),
]Ca = ]Cea S2) Ic(l—e—f)a and

(1) ICea = ICea—e)\ = Sym(an(R)ea—e)\a *)

(i) Ka—e—fya s a nondegenerate Jordan algebra of quadratic form.

(ill) Ksq =0.



JORDAN ELEMENTS IN SEMIPRIME RINGS 21

Proof. Let us denote Q := Q?,(R). By 5.5, a is a Jordan element of @ and therefore
by 4.2 and following its notation there exist two idempotents e :=e3, f :=e1+eg €
Sym(C(R),*) and X € e Skew(C(R), *) such that fa € Z(K), (ea — eX)? = 0 and,
if e+ f # 1, then (1 — e — f)a is nilpotent of index 3 and ((1 — e — f)a)? generates
an essential ideal in (1 —e — f)Q.

(i) Consider @1 := e@, which is again a semiprime ring with involution x free
of 2 and 3-torsion. Notice that it is the symmetric Martindale ring of quotients
of eR. Then ex € Skew(Q1,*) is a Jordan element. Now (ea — eA)? = 0 implies
by 5.6 that Skew(Q1,*)ex = Skew(Q1,*)eca—er = Sym((Q1)ea—er,*). Moreover
(Ql)eafe)\ = Qeafeka SkeW(Qla *)ea = ’Cea and SkeW(Qh *)eafe/\ = Keafe)\-

(ii) Consider Q2 := (1—e— f)Q, which is again a semiprime ring with involution
free of 2 and 3-torsion. Notice that it is the symmetric Martindale ring of quotients
of (1 —e— f)R and therefore is centrally closed. Then (1 —e— f)a € Skew(Q2, %) is
a Jordan element such that (1 —e — f)a is nilpotent of index 3 and ((1 — e — f)a)?
generates an essential ideal in Q2. Now, by 5.4(b) there exists ¢ € Sym(Qa, *) such
that (1—e— f)a’ca® = (1—e—f)a?, (1—e— f)ea’c=c,c> =0and (1—e— f)a =
(1 —e— f)(a*ca+ aca®) and thus, by 5.7, Skew(Q2, *)(1—c—f)q is a nondegenerate
Jordan algebra of quadratic form. Moreover Skew(Q2,*)(1—c—f)a = K(1—e—f)a-

(iil) Since fa € Z(K) we have that Ker(fa) = K and hence K, = 0. O

The next result is a corollary in the case that R is a prime ring. Note that in
this case it is not necessary to extend the ring to its Martindale ring of quotients
to determine the structure of the Jordan algebra associated to the Jordan element.
Case (ii) corresponds to [9, Theorem 4.7].

Corollary 5.9. Let R be a centrally closed x-prime ring with involution * free of
2 and 3-torsion and let a € K := Skew(R, x) be a Jordan element. Then we have
one of the next mutually exclusive possibilities:

(i) There exists A € Skew(C(R), *) such that (a — \)?> = 0 and therefore K, =
Ko\ = Sym(Rq-x, *).
(i) a® =0, a® # 0 and K, is a Clifford Jordan algebra.
(i) a € Z(K) but a ¢ Z(R) and therefore K, = {0}.

Proof. By 4.3 we have three possibilities:

(1) Cases (i) and (iii) of 4.3: There exists A € Skew(C(R), *) such that (a—\)? =
0 and therefore by 5.6 we have that K, = K, ) = Sym(R,_, *). Note that case
(i) implies that K, = {0}.

(2) Case (iv) of 4.3: We have that a® = 0 and a? generates an essential ideal
of R. By 5.3(d), since R is semiprime, there exist z € R and A\, € Sym(C(R), %)
such that 0 # a?za? = M\,a®. Consider the partner ), of \, given in 2.10. Now,
a’X za® = N \,a® = a® (because 1 is the only nonzero symmetric idempotent in
C(R), since R is x-prime). Now, again by the proof of 5.3(d) there exists ¢ €
Sym(R, %) such that a?ca? = a2, ca’c = ¢, ¢ = 0 and a = (a%ca + aca?). Finally,
since C(R) is a field, 5.7 proves that K, is a Clifford Jordan algebra (see 2.2).

(3) Case (ii) of 4.3: We have that a € Z(K) and it is not contained in Z(R).
Then R is a Pl-algebra that satisfies the standard identity Sy and K is an abelian
Lie algebra. In particular K, = {0}. O
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