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1. Introduction

Local algebras at elements were introduced by Meyberg in a nonassociative con-
text [29], and they have also proved to be a very useful tool in the setting of
associative systems, see [14]. In the Jordan setting they were used by Zelmanov as
a minor part of his brilliant classification of Jordan systems [33, 34, 35], and were re-
visited by D’Amour and McCrimmon in [10]. They have played a prominent role in
the structure theory of Jordan systems, mainly due to the fact that nice properties
flow between the system and its local algebras. Thus, D’Amour and McCrimmon
extended a substantial part of Zelmanov’s results to arbitrary quadratic Jordan sys-
tems by making use of local algebras [11]. On the other hand, ad-nilpotent elements
of index at most 3 (here called Jordan elements) play a fundamental role in the
proof of Kostrikin’s conjecture that any finite-dimensional simple nondegenerate
Lie algebra (over a field of characteristic greater than 5) is classical [8, 30]. Jordan
elements are also of great importance in the Lie inner ideal structure of associative
rings [7].

The analogue of local algebras for Lie algebras was introduced by the second
two authors and A. Fernández López in [13]. They showed that it is possible to
attach a Jordan algebra to any Jordan element of a Lie algebra. Since their in-
troduction, these Jordan algebras have proven to be very useful: they inherit good
properties from the Lie algebra itself, such as nondegeneracy [13], strong prime-
ness [16] and even local finiteness [20], so the structure theory of Jordan systems
can be transferred to the original Lie algebra. For example, in [15] the authors
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revisited the celebrated paper of Zelmanov [32] by using Jordan algebras of Lie al-
gebras. Moreover, Jordan elements have been used as tools in the study of infinite-
dimensional Lie algebras. Indeed, they are important in the recent description of
simple, infinite-dimensional, locally finite and locally nondegenerate Lie algebras
with Jordan elements, see [20, Theorem 1], and A. Baranov and J. Rowley gave
a characterization of infinite locally finite simple diagonal Lie algebras in terms of
inner ideals, which are closely related to Jordan elements, see [4].

We focus on two types of Lie algebras coming from the associative context: R−

and Skew(R, ∗) for centrally closed semiprime rings R. For these Lie algebras, we
highlight the recent works [1] and [3]. Our aim is, on the one hand, to describe
Jordan elements of semiprime rings, and on the other hand, to describe the Jor-
dan algebras of Lie algebras of the form R− and Skew(R, ∗) for a centrally closed
semiprime ring R at those Jordan elements. We characterize those Jordan algebras
in terms of local algebras of the original ring (in the case of R−) and in terms of
local algebras of the symmetric Martindale ring of quotients of R for the case with
involution.

The first step in this project is to associate a nilpotent element to any Jordan
element. Jordan elements are directly associated to a particular case of nilpotent
derivations, and this has been a topic of interest since the 1960’s. In 1963, I. N.
Herstein showed that any ad-nilpotent element a of index n in a simple ring R
of characteristic zero or greater than n gives rise to a nilpotent element a − λ for
some λ in the center of R. Moreover, he showed that the index of nilpotency of
such element is less than or equal to bn+1

2 c, see [21, Theorem in page 84]. This
result of Herstein was generalized by W. S. Martindale and C. R. Miers in 1983
([25, Corollary 1]) to prime rings of characteristic greater than n. This time the
nilpotent element has the form a− λ for an element λ in the extended centroid of
R. Later on, in 1992, this same result was studied by P. Grzeszczuk for the case of
semiprime rings. He showed that any nilpotent derivation in a semiprime ring is an
inner derivation in a semiprime subring of the right Martindale ring of quotients of
R and is induced by a nilpotent element in such subring, see [19, Corollary 8].

Since we are interested in Jordan elements, our nilpotent derivations have the
form ada with ad3

a = 0, so all the previously mentioned results apply directly to
Jordan elements of simple, prime or semiprime rings respectively. Nevertheless, for
the sake of completeness, we include in this paper an alternative proof of the form
of Jordan elements of R− for semiprime rings R. On the other hand, when dealing
with rings with involution ∗, apart from the Lie algebra R− it is natural to study
the Lie algebra of skew-symmetric elements Skew(R, ∗). The nilpotent derivations
of the skew elements of prime rings with involution were studied in the 1990’s by
W. S. Martindale and C. R. Miers, who showed that if R is a prime ring with
involution of characteristic zero which is not an order in a 4-dimensional central
simple Lie algebra and has some inner derivation ada with adna = 0, then there

exists an element λ in the extended centroid of R such that either (a−λ)b
n+1
2 c = 0

or the involution is of the first kind and ab
n+1
2 c+1 = 0, see [26, Main Theorem].

As far as we know this result has not been extended to semiprime rings yet. In
this paper we prove an analogue of it for Jordan elements of the skew elements
of a semiprime ring, showing that either they have the form a − λ with λ in the
extended centroid and (a − λ)2 = 0 or a has index of nilpotency 3 and R satisfies
a generalized polynomial identity.
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These results on Jordan elements make possible to classify the Jordan algebras
at Jordan elements of the Lie algebras of R− and Skew(R, ∗) type. For the R− case
we show the following result:

Lemma 5.1 Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let a ∈ R be a Jordan element. Then there exists a′ in R such that (R−)a ∼=
(Ra′)

+, i.e., the Jordan algebra of the Lie algebra R− at a is isomorphic to the
symmetrization of a local algebra of the ring R.

For rings with involution we relate the Jordan algebras of the Lie algebras of their
skew elements with local algebras of their symmetric Martindale ring of quotients.

Theorem 5.8 Let R be a centrally closed semiprime ring with involution ∗
free of 2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element. Let
Qsm(R) be the symmetric Martindale ring of quotients of R. Then there exist two
idempotents e, f ∈ Sym(C(R), ∗) that decompose Qsm(R) as a sum of three orthog-
onal ideals Qsm(R) = eQsm(R) ⊕ fQsm(R) ⊕ (1 − e − f)Qsm(R), and an element
λ ∈ e Skew(C(R), ∗) such that a = ea+ fa+ (1− e− f)a ∈ K := Skew(Qsm(R), ∗),
Ka ∼= Kea ⊕K(1−e−f)a and

(i) Kea ∼= Kea−eλ ∼= Sym(Qsm(R)ea−eλ, ∗).
(ii) K(1−e−f)a is a nondegenerate Jordan algebra of quadratic form.
(iii) Kfa = 0.

In this case we have to resort to Qsm(R) to assure that the Jordan algebra of
type (ii) is “complete”; for R, the associated Jordan algebras are just “forms” of
these type. This is due to the element (1 − e − f)a being von Neumann regular
in Qsm(R) but not necessarily in R, in which all that we know is that (1− e− f)a
is regular when multiplied by certain central idempotents. Indeed, similar results
could be proved inside the orthogonal completion of R.

In the particular case of prime rings with involution, our result on the Jordan
algebras of Skew(R, ∗) at Jordan elements gives rise to the next result, which ap-
pears in [9]. Note that it is not necessary to extend R to its symmetric Martindale
ring of quotients.

Corollary 5.9 Let R be a centrally closed ∗-prime ring with involution ∗ free of
2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element. Then we have
one of the next mutually exclusive possibilities:

(i) There exists λ ∈ Skew(C(R), ∗) such that (a− λ)2 = 0 and therefore Ka
∼=

Ka−λ ∼= Sym(Ra−λ, ∗).
(ii) a3 = 0, a2 6= 0 and Ka is a Clifford Jordan algebra.
(iii) a ∈ Z(K) but a 6∈ Z(R) and therefore Ka = {0}.

2. Preliminaries

2.1. Throughout this paper and at unless otherwise specified, we will be dealing
with Lie algebras L, rings R and Jordan algebras J free of 2 and 3-torsion. As
usual, [x, y] will denote the Lie bracket of two elements x, y of L, with adx the
adjoint map determined by x; the product of two elements x, y of R will be written
by juxtaposition, xy; the Jordan product of two elements x, y of J will be denoted
by x • y, with U -operator Uxy := 2x • (x • y) − x2 • y. The reader is referred
to [22, 28] for basic results, notation and terminology on Lie algebras and Jordan
algebras respectively. Nevertheless, we will stress some notions and basic properties
of both kinds of algebras.

Any ring R, which can be seen as an associative algebra over Z, gives rise to:
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(1) A Lie algebra R− with Lie bracket [x, y] := xy − yx, for all x, y ∈ R.
(2) A subalgebra K := Skew(R, ∗) of the Lie algebra R−, when R has an

involution ∗.
(3) A Jordan algebra R+ with Jordan product x • y := 1

2 (xy + yx), called the
symmetrization of R.

(4) A subalgebra Sym(R, ∗) of the Jordan algebraR+, whenR has an involution
∗.

Notice that for every element x ∈ R we can express 2x as a sum of the skew-
symmetric element x− x∗ and the symmetric element x+ x∗. Moreover, since our
rings are free of 2-torsion 2x = 0 implies x = 0.

2.2. Let V be a module over a ring of scalars Φ with 1
2 ∈ Φ, let Q : V → Φ be a

quadratic form on V , i.e., a form such that Q(αv) = α2Q(v), and let Q(v, w) :=
Q(v + w) − Q(v) − Q(w) be the associated bilinear form on V × V . Let c ∈ V
be such that Q(c) = 1. Let T : V → Φ be defined by T (v) := Q(c, v), called a
trace form. Then we can define the unitary Jordan algebra Jord(Q, c) := V as a
Φ-module with unit 1 := c and product

x • y :=
1

2
(T (x)y + T (y)x−Q(x, y)1).

This Jordan algebra is called a Jordan algebra of quadratic form or a quadratic
factor, and satisfies the second-degree equation x2 − T (x)x + Q(x)1 = 0, see [28,
page 75]. If Φ is a field and the quadratic form is nondegenerate, then Jord(Q, c)
is a Jordan algebra called the Clifford Jordan algebra associated to the quadratic
form Q, which is simple whenever the dimension of V is different from 1, see [28,
page 97].

2.3. A ring R is semiprime if for every nonzero ideal I of R we have I2 :=
{
∑
i xiyi | xi, yi ∈ I} 6= 0, and it is prime if IJ := {

∑
i yixi | yi ∈ I, xi ∈ J} 6= 0

for every pair of nonzero ideals I, J of R. It is well known that a ring R is prime
if and only if xRy 6= 0 for arbitrary nonzero elements x, y ∈ R, and semiprime if
and only if it is nondegenerate, i.e., if xRx 6= 0 for every nonzero element x ∈ R.
Moreover, if R is a semiprime ring and x, y ∈ R satisfy xRy = 0 then the ideals
IdR(x), IdR(y) are orthogonal. We will use this property without mentioning it.

2.4. Given an ideal I of R, the annihilator of I in R is the set

AnnR(I) := {z ∈ R | zI = Iz = 0}.

The annihilator of an ideal I of R is an ideal of R. Moreover, if R is semiprime,

• AnnR(I) := {z ∈ R | zIz = 0}.
• I ∩AnnR(I) = 0.
• An ideal I of R is essential (for every nonzero ideal J of R, I ∩ J 6= 0) if

and only if AnnR(I) = 0.

2.5. Let a be an element in a ring R. The additive group (R,+) endowed with the
a-homotope product x ·a y := xay becomes a ring Ra called the homotope of R at a.
The set Ker(a) := {x ∈ R | axa = 0} is an ideal of Ra. Meyberg’s local rings are the
quotients Ra := Ra/Ker(a) for a ∈ R with product given by x̃ ◦ ỹ := xay + Ker(a)
([29]). If R has an involution ∗ and a ∈ Skew(R, ∗) then Ra is also a ring with

involution ∗ given by x̃∗ := −̃x∗.
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In [14] the authors proved that Ra is isomorphic to the submodule aRa, endowed
with the product axa �aya := axaya via the mapping ϕ given by x̃ = x+ Ker(a) 7→
axa. In [18] the authors generalized this notion: Let R be a subring of a ring Q.
If a ∈ Q is such that RaR ⊂ R then aRa can be regarded as a subring of ϕ(Qa).
This ring will be called the generalized local ring of R at a, and will be denoted by
Ra.

2.6. Let L be a Lie algebra over a ring of scalars Φ such that 1
2 ,

1
3 ∈ Φ. We say

that an element a in L is a Jordan element if a is ad-nilpotent of index no greater
than 3, i.e., if ad3

a = 0. Every Jordan element gives rise to a Jordan algebra, called
the Jordan algebra of L at a, see [13]: Let L be a Lie algebra and let a ∈ L be
a Jordan element. Then L with the new product x • y := 1

2 [[x, a], y] is an algebra
such that

Ker(a) := {z ∈ L | [a, [a, z]] = 0}
is an ideal of (L, •). Moreover, La := (L/Ker(a), •) is a Jordan algebra. In this
Jordan algebra the U -operator and the triple product have these nice expressions:

Uxy =
1

4
ad2
x ad2

a y, for all x, y ∈ L, and

{x, y, z} = −1

2
[x, [ad2

a y, z]] for all x, y, z ∈ L.

A Lie algebra is nondegenerate if and only if La is nonzero for every Jordan element
a ∈ L. In particular, La inherits nondegeneracy from L [13, 2.15(i)].

In the following two paragraphs we will review the concepts of right Martindale
ring of quotients and symmetric Martindale ring of quotients. The theory of rings of
quotients has its origins between 1930 and 1940 in the works of O. Ore and K. Osano
on the construction of the total ring of fractions. Martindale rings of quotients
were introduced by W.S. Martindale in 1969 for prime rings [24]. This concept was
designed for applications to rings satisfying a generalized polynomial identity (GPI
for short). In 1972, A. Amitsur generalized the construction of Martindale rings of
quotients to the setting of semiprime rings ([2]).

2.7. Given a ring R we define a permissible map of R as a pair (I, f) where I is an
essential ideal of R and f is a monomorphism of right R-modules. For permissible
maps (I, f) and (J, g) of R, define a relation ≡ by (I, f) ≡ (J, g) if there exists an
essential ideal K of R, contained in I ∩ J , such that f(x) = g(x) for all x ∈ K. It
is easy to see that this is an equivalence relation. The quotient set Qrm(R) will be
called the right Martindale ring of quotients of R. If R is a semiprime ring Qrm(R)
has a ring structure coming from the addition of homomorphisms and from the
composition of restrictions of homomorphisms, see [5]:

• [I, f ] + [J, g] := [I ∩ J, f + g],
• [I, f ] · [J, g] := [(I ∩ J)2, f ◦ g].

Note that if R is a semiprime ring then the map f : R → Qrm(R) defined by
f(r) := [R, λr], where λr : R → R is defined by λr(x) := rx, is a monomorphism
of associative rings, i.e., R can be considered as a subring of its right Martindale
ring of quotients. Moreover, given any 0 6= q := [I, f ] ∈ Qrm(R) we have that
0 6= qI ⊂ R. Therefore every subring S of Qrm(R) which contains R is semiprime
because every nonzero ideal of S has nonzero intersection with R.
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2.8. Given a ring R, the symmetric Martindale ring of quotients of R is defined as

Qsm(R) := {q ∈ Qrm(R)| there exists an essential ideal I of R such that qI+Iq ⊂ R}.
If R is semiprime then Qsm(R), which is a subring of Qrm(R) containing R, is a
semiprime ring. Moreover, if R is a semiprime ring with involution ∗ then we
can extend ∗ to Qsm(R), and this extension is unique: given q := [I, f ] ∈ Qsm(R),
q∗ := [U, g] where U := I ∩ I∗ is an essential ∗-ideal of R such that qU + Uq ⊂ R,
and g(u) := f(u∗)∗ for every u ∈ U .

2.9. The extended centroid C(R) of a semiprime ring R is defined as the center
of its symmetric Martindale ring of quotients. The extended centroid of a prime
ring is a field, and the extended centroid of a semiprime ring is a commutative
and unital von Neumann regular ring. In particular, if R is semiprime, C(R) is a
semiprime ring without nilpotent elements.

The central closure of R, denoted by R̂, is defined (see [25]) as the subring of

Qsm(R) generated by R and C(R), i.e., R̂ := C(R)R + C(R), and can be seen as

a C(R)-algebra. Therefore we can consider R contained in R̂. Moreover, since R̂

contains R and is contained in Qrm(R), if R is semiprime then R̂ is also semiprime.

We say that R is centrally closed if it coincides with its central closure R̂. In
particular, the ring R̂ is centrally closed with center equal to its extended centroid,
i.e., Z(R̂) = C(R). If R is a centrally closed semiprime ring with involution then
R− is a Lie algebra over C(R); if in addition R has an involution, then Skew(R, ∗)
is a Lie algebra over Sym(C(R), ∗).

2.10. For a semiprime ring R, given an element λ ∈ C(R) there exists a unique
λ′ ∈ C(R) such λλ′λ = λ and λ′ = λ′λλ′ (indeed, if λ = λλ′λ = λµλ, λ′ = λ′λλ′

and µ = µλµ then λ′ = λ2(λ′)3 = λ2µ3 = µ). Such unique element λ′ will be called
the partner of λ. Let us define eλ := λλ′. Then eλ is an idempotent of C(R) such
that eλλ = λ.

If R has no k-torsion for some k ∈ N then k is invertible in C(R): for k = k · 1 ∈
C(R) there exists k′ ∈ C(R) such that kk′k = k, so k(k′k − 1) = 0 and kk′ = 1,
thus k′ = 1

k ∈ C(R). In particular, when R is a semiprime ring with involution

∗ and no 2-torsion, every element x ∈ R̂ can be expressed as x = xs + xk with
xs := 1

2 (x + x∗) ∈ Sym(R̂, ∗) and xk := 1
2 (x − x∗) ∈ Skew(R̂, ∗). We will use this

property without mentioning it.
Moreover, if R is a semiprime ring with involution ∗ and λ ∈ Skew(C(R), ∗) then

λ = −λ∗ = −(λλ′λ)∗ = λ(−λ′)∗λ and (−λ′)∗λ(−λ′)∗ = (λ′λ∗λ′)∗ = (−λ′)∗, which
imply by uniqueness of λ′ that λ′ = (−λ′)∗ ∈ Skew(C(R), ∗). In this case eλ = λλ′

is a symmetric idempotent of C(R).

Lemma 2.11. Let (R, ∗) be a semiprime ring with involution free of 2-torsion
and let a ∈ Skew(R, ∗) and λ ∈ C(R) be such that a − λ is nilpotent. Then
λ ∈ Skew(C(R), ∗). Moreover, if a− µ is nilpotent with µ ∈ C(R), then λ = µ.

Proof. If a− λ and a−µ are nilpotent elements of R̂, since they commute, a− λ−
(a − µ) = µ − λ is a nilpotent element in the semiprime commutative ring C(R).
Therefore λ = µ. Now, if a− λ is nilpotent then (a− λ)∗ = −(a+ λ∗) is nilpotent
and therefore a+ λ∗ is nilpotent, which implies that λ∗ = −λ. �

The following result is an analogue of the Lie Jacobson-Morozov lemma for the
setting of rings. Its proof will appear in [9, Lemma 2.2].
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Lemma 2.12. Let R be an algebra over a ring of scalars Φ and let a, b ∈ R be such
that a2 = 0 and aba = a. Then there exists c ∈ R such that aca = a, cac = c and
c2 = 0. Moreover, if R has an involution ∗, 1

2 ∈ Φ and a ∈ Skew(R, ∗) (respectively
a ∈ Sym(R, ∗)) then c can be taken in Skew(R, ∗) (respectively c ∈ Sym(R, ∗)).

Under the conditions of the previous lemma, the elements a and c will be called
twins (as done in [9]).

We will use the following results due to Beidar, Martindale and Mikhalev ([6,
Theorem 2.3.3, Theorem 2.3.9]).

Theorem 2.13. For any semiprime ring R with extended centroid C(R) and any

a1, . . . , an ∈ R, if a1 6∈
∑n
i=2 C(R)ai in R̂ then there exist rj , sj ∈ R with j =

1, 2, . . . ,m such that
∑m
j=1 rja1sj 6= 0 and

∑m
j=1 rjaksj = 0 for k = 2, . . . , n.

Corollary 2.14. Let R be a semiprime ring with extended centroid C(R). Let
ai, bi ∈ R for i = 1, 2, . . . , n be such that

∑n
i=1 aixbi = 0 for every x ∈ R. In

addition, suppose that every nonzero ideal contained in IdR(a1) has nonzero inter-
section with IdR(b1) (this happens in particular if IdR(a1) ⊂ IdR(b1)). Then there
exist λi ∈ C(R) for i = 2, . . . , n such that a1 =

∑n
i=2 λiai.

Proof. By 2.13, if a1 6∈
∑n
i=2 C(R)ai there exist rj , sj ∈ R, j = 1, . . . ,m, such

that
∑m
j=1 rja1sj 6= 0 and

∑m
j=1 rjaksj = 0 for k = 2, . . . , n. In the identity∑n

i=1 aixbi = 0 replace x by sjx and multiply on the left by rj . We have

0 =

n∑
i=1

m∑
j=1

rjaisjxbi =

m∑
j=1

rja1sjxb1,

which implies that the ideal generated by
∑m
j=1 rja1sj , I := IdR(

∑m
j=1 rja1sj), is

orthogonal to the ideal generated by b1. Therefore I ∩ IdR(b1) is a nonzero ideal
(by hypothesis) of zero square, a contradiction because R is semiprime. �

Proposition 2.15. Let R be a centrally closed semiprime ring free of 2-torsion
with extended centroid C(R). Then for any subset V ⊂ R there exists a unique
idempotent e ∈ C(R) such that:

(a) ev = v for all v ∈ V ,
(b) the annihilator in C(R) of V is AnnC(R)(V ) = (1− e)C(R),
(c) the annihilator in R of the ideal generated by V is AnnR(RV R) = (1−e)R,

and
(d) the ideal generated by V is essential in eR.

Moreover, when R has an involution ∗ and V ⊂ Sym(R, ∗) ∪ Skew(R, ∗), then
e ∈ Sym(C(R), ∗).

Proof. The first part of the proof follows as in [6, Theorem 2.3.9(i)] with the ob-
vious changes. When R has an involution we can decompose e = ek + es with
ek ∈ Skew(C(R), ∗) and es ∈ Sym(C(R), ∗). If V ⊂ Sym(R, ∗) ∪ Skew(R, ∗), for
every v ∈ V we have that ev = v implies ekv = 0 because if v ∈ Sym(R, ∗)
then ekv ∈ Skew(R, ∗), while if v ∈ Skew(R, ∗) then ekv ∈ Sym(R, ∗). Therefore
ek ∈ AnnC(R)(V ) = (1 − e)C(R), i.e., eke = 0 and e2

k = ekes = 0, and therefore

e = e2 = (ek + es)
2 = e2

s ∈ Sym(C(R), ∗). �
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3. Jordan elements of R−

The first part of the following lemma appears in [12, Proposition 3.6(1)]. We
include it here for the sake of completeness.

Lemma 3.1. Let R be a semiprime ring and let a ∈ R be such that ad3
a(R) ⊂ Z(R).

Then ad3
a(R) = 0. Moreover, if R is free of 3-torsion, then (ad2

a x)(ad2
a y) = 0 for

every x, y ∈ R.

Proof. For every x ∈ R we have by the Leibniz Rule that

0 = [ad3
a(xa), x] = [ad3

a(x)a, x] = ad3
a(x)[a, x],

Therefore 0 = ad2
a(ad3

a(x)[a, x]) = (ad3
a(x))2, which implies, since R is semiprime

and ad3
a(x) ∈ Z(R), that ad3

a(x) = 0. Now,

0 = ad3
a(x ada(y)) =

3∑
i=0

(
3

i

)
adia(x) ad4−i

a (y) = 3 ad2
a(x) ad2

a(y),

so (ad2
a x)(ad2

a y) = 0 for every y ∈ R. �

LetR be a ring and let a ∈ R be such that there exists λ ∈ C(R) with (a−λ)2 = 0.
Then it is easy to see that a is a Jordan element of R: if b := a− λ, for all x ∈ R
we have

ad3
a(x) = ad3

a−λ(x) = ad3
b(x) = b3x− 3b2xb+ 3bxb2 − xb3 = 0 (1)

where the calculations are done in the central closure R̂ of R.
The converse was proved in [21, Theorem in page 84] and [7, Theorem 3.2] (in a

more general form) for simple rings, and extended later by Martindale and Miers
[25, Corollary 1] to prime rings and by Grzeszczuk [19, Corollary 8] to semiprime
rings. We include here a simpler proof for the semiprime case.

Theorem 3.2. Let R be a semiprime ring free of 2, 3-torsion, and let a ∈ R be a
Jordan element of R−. Then there exists λ ∈ C(R), the extended centroid of R,

such that (a− λ)2 = 0 in the central closure R̂ of R.

Proof. By replacing R by R̂ we may assume, without loss of generality, that R is
centrally closed. By 3.1 for every x, y ∈ R we have that (ad2

a x)(ad2
a y) = 0, i.e.,

0 = (ad2
a x)(ad2

a y) = a2x(ad2
a y) + ax(−2a ad2

a y) + x(a2 ad2
a y). (2)

We claim that a2 = µa+ τ for some µ, τ ∈ C(R). Otherwise, by 2.13 applied to
a2, a, 1 ∈ R there would exist rj , sj ∈ R, j = 1, . . . ,m, such that

∑m
j=1 rja

2sj 6= 0

and
∑m
j=1 rja

ksj = 0 for k = 0, 1. In formula (2), for each j = 1, . . . ,m replace x
by sjx and multiply on the left by rj . We obtain

0 =

m∑
j=1

rj
(
a2sjx(ad2

a y) + asjx(−2a ad2
a y) + sjx(a2 ad2

a y)
)

=

m∑
j=1

(rja
2sj)x(ad2

a y)

which says that, for each y ∈ R,

ad2
a y = a2y + ya2 − 2aya ∈ AnnR(I)
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where I denotes the ideal generated by
∑m
j=1 rja

2sj . For each j = 1, . . . ,m replace
y by sj and multiply on the left by rj . Then by semiprimeness of R we obtain

m∑
j=1

rja
2sj =

m∑
j=1

rj(a
2sj + sja

2 − 2asja) ∈ I ∩AnnR(I) = 0,

which is a contradiction. Therefore, there exist µ, τ ∈ C(R) such that a2 = µa+ τ .
Substituting a2 = µa+τ in the expansion of ad3

a(x) = 0, since a3 = (µ2+τ)a+µτ ,
we obtain

0 = ad3
a(x) = a3x− 3a2xa+ 3axa2 − xa3 = ((µ2 + τ)a+ µτ)x− 3(µa+ τ)xa

+ 3ax(µa+ τ)− x((µ2 + τ)a+ µτ) = (µ2 + 4τ)ax− (µ2 + 4τ)xa

= [(µ2 + 4τ)a, x]

for every x ∈ R, which proves that (µ2 + 4τ)a is a central element of R, i.e.,

(µ2 + 4τ)a ∈ C(R).

Set α := µ2+4τ . Now apply 2.10 to get its partner α′ and the central idempotent
eα. Recall that eαα = α. Define the idempotent fα := 1 − eα and the element
λ := eαa+ 1

2fαµ, which is central since eαa = α′(αa) and αa ∈ C(R). Then

(a− λ)2 = (a− eαa−
1

2
fαµ)2 = (fαa−

1

2
fαµ)2 = fα(a2 − µa+

1

4
µ2)

= fα(µa+ τ − µa+
1

4
µ2) = fα(τ +

1

4
µ2) =

1

4
fαα = 0. �

4. Jordan elements of Skew(R, ∗)

Proposition 4.1. Let R be a ring with involution ∗ free of 2-torsion and let K :=
Skew(R, ∗). Let a ∈ K be a Jordan element of K. Then, for every x, y ∈ K and
λ ∈ Skew(Z(R), ∗) we have:

(a) a2 is a Jordan element of R, i.e., ad3
a2(R) = 0.

(b) λa is a Jordan element of R, i.e., ad3
λa(R) = 0.

(c) If in addition R is free of 3-torsion, then ad2
a(x) ad2

a(y) ad2
a(x) = 0.

Proof. (a) Let x ∈ R. Then 2x = xk + xs where xk := x − x∗ ∈ K and xs :=
x + x∗ ∈ Sym(R, ∗). Now, since ad3

a(xs)a = ad3
a(xsa) and a ad3

a(xs) = ad3
a(axs),

we have

2 ad3
a2(x) = ad3

a2(2x) =

3∑
i=0

(
3

i

)
ai ad3

a(xk + xs)a
3−i =

3∑
i=0

(
3

i

)
ai ad3

a(xk)a3−i+

+

3∑
i=0

(
3

i

)
ai ad3

a(xs)a
3−i = 0 +

3∑
i=0

(
3

i

)
ai ad3

a(xs)a
3−i

= ad3
a(xs)a

3 + 3a ad3
a(xs)a

2 + 3a2 ad3
a(xs)a+ a3 ad3

a(xs)

= ad3
a(xsa+ axs)a

2 + 2a ad3
a(xsa+ axs)a+ a2 ad3

a(xsa+ axs) = 0

since xsa+ axs ∈ K, so ad3
a2(R) = 0.

(b) We have

2 ad3
λa(x) = ad3

λa(2x) = λ3 ad3
a(xk + xs) = λ3 ad3

a(xs) = λ2 ad3
a(λxs) = 0



10 JOSE BROX, ESTHER GARCÍA, AND MIGUEL GÓMEZ LOZANO

since λxs ∈ K. So ad3
λa(R) = 0.

(c) Since x, y ∈ K we have that x ad2
a(y)x ∈ K and therefore

0 = ad4
a(x ad2

a(y)x) = 6 ad2
a(x) ad2

a(y) ad2
a(x). �

The next theorem produces a decomposition of a Jordan element a of Skew(R, ∗)
for a semiprime ring R with involution ∗. Essentially, R̂ can be decomposed as a
direct sum of five orthogonal ideals such that a lies in the sum of four of them. This
makes possible to write the Jordan element a as a sum of four elements: a central
element of R (see 4.2 case (i)), a “purely” central element of Skew(R, ∗) (see 4.2
case (ii)), and an ad-nilpotent element of index 3 that again is decomposed as a
sum of two different elements: a Jordan element of Skew(R, ∗) which is a Jordan
element of R (see 4.2 case (iii)) and a “Clifford” element of Skew(R, ∗) (see 4.2 case
(iv)).

Note that there are no ad-nilpotent elements of index 2 in Skew(R, ∗) when R is
a semiprime ring with involution ∗, see [17, Corollary 4.8].

Theorem 4.2. Let R be a centrally closed semiprime ring with involution ∗ free of 2
and 3-torsion and let K := Skew(R, ∗). Let a ∈ K be a Jordan element of K. Then
there exists a complete system of five orthogonal idempotents ei ∈ Sym(C(R), ∗),
i = 1, · · · , 5, that decomposes the central closure R =

⊕5
i=1 eiR as a sum of five

orthogonal ideals in such a way that

(i) e1a is a central (skew) element of R,
(ii) e2a is a central (skew) element of Skew(R, ∗), e2R is a PI-algebra that

satisfies the standard identity S4, Skew(e2R, ∗) is an abelian Lie algebra
such that Skew(e2R, ∗)2 ⊆ Z(R),

(iii) there exists a unique λ ∈ e3 Skew(C(R), ∗) such that (e3a− e3λ)2 = 0,
(iv) (e4a)3 = 0, and if e4 6= 0 then (e4a)2 generates an essential ideal in e4R

and R satisfies a nonzero GPI, and
(v) a =

∑4
i=1 eia, e5a = 0, and the ideal generated by a is essential in

⊕4
i=1 eiR.

Moreover,

(*) if h ∈ Sym(C(R), ∗) is an idempotent such that ha ∈ Z(Skew(R, ∗)) then

(e1 + e2)h = h.

Proof. Note that every idempotent e ∈ Sym(C(R), ∗) decomposes R as a sum of
two orthogonal ideals R = eR⊕ (1− e)R and both eR and (1− e)R are semiprime
rings with involution with Jordan elements ea (of Skew(eR, ∗)) and (1 − e)a) (of
Skew((1− e)R, ∗)). Moreover C(eR) ⊂ C(R) and C((1− e)R) ⊂ C(R).

(1) At this point we are going to decompose a as the sum of a central element
and some other element that we will call b. Given the set T := [a,Skew(R, ∗)] ∪
[a,Sym(R, ∗)], by 2.15 there exists an idempotent u ∈ Sym(C(R), ∗) such that uy =
y for every y ∈ T and therefore uy = y for every y ∈ [a,R], and AnnR(IdR([a,R])) =
(1 − u)R, because AnnR(IdR([a,R])) = AnnR(IdR(T )). Let e1 := 1 − u. We can
decompose

R = e1R⊕ (1− e1)R

and then we can work with

R(1) := (1− e1)R, K(1) := Skew(R(1), ∗), and b := (1− e1)a,

where R(1) is semiprime with involution and b is a Jordan element of K(1). Notice
that [e1a,R] = (1− u)[a,R] = 0, so e1a is a central (skew) element of R.
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(2) Secondly, we are going to decompose b as the sum of a “purely” central
element of Skew(R, ∗) and a remainder that we call c. We will also prove (∗) in
(2.2), and show that c satisfies a polynomial identity of degree 4 over C(R). Given
the set [b,K(1)], by 2.15 there exists an idempotent v ∈ Sym(C(R(1)), ∗) such
that vy = y for every y ∈ [b,K(1)] and AnnR(1)(IdR(1)([b,K(1)])) = (1 − v)R(1).
Therefore, if we define e2 := (1− e1)(1− v) we have that

R = e1R⊕ e2R⊕ (1− e1 − e2)R,

and analogously we can work with

R(2) := (1− e1 − e2)R, K(2) := Skew(R(2), ∗), and c := (1− e1 − e2)a.

Notice that e2a is a central (skew) element of Skew(R, ∗) because [e2a,K] = (1 −
v)(1− e1)[a,K] = (1− v)[(1− e1)a, (1− e1)K] = (1− v)[b,K(1)] = 0.

(2.1) e2R is a PI-algebra that satisfies the standard identity S4 and Skew(e2R, ∗)
is an abelian Lie algebra: [e2a,R] generates an essential ideal in e2R (because
its annihilator is zero) and therefore given any y ∈ e2R there exists 0 6= z ∈
Ide2R(y)∩ Ide2R(e2[a,R]). Moreover, since e2R is semiprime there exists a ∗-prime
ideal Iα of e2R such that z 6∈ Iα, see [27]. In particular e2a ∈ Z(Skew(R/Iα, ∗))
since [e2a,K] = 0, but e2a 6∈ Z(R/Iα) since [e2a,R] ⊆ Iα implies z ∈ Iα, a
contradiction. This implies by [17, Proposition 4.6] that the involution of R/Iα is
of the first kind, R/Iα is an order in a simple algebra Q with dimZ(Q)(Q) ≤ 4, and
Skew(R/Iα, ∗) is an abelian Lie algebra. In particular R/Iα is a PI-algebra that
satisfies the standard identity S4. Now, since the intersection of all Iα in these
conditions is zero (see [27]), we have that [Skew(e2R, ∗),Skew(e2R, ∗)] ⊂

⋂
α Iα = 0

and hence Skew(e2R, ∗) is an abelian Lie algebra. Moreover, e2R is a subdirect
product of PI-algebras that satisfy the standard identity S4 and hence e2R satisfies
S4.

Now, if k ∈ Skew(e2R, ∗) and x ∈ e2R we have that 2x = xk + xh, where
xk = x− x∗ ∈ Skew(e2R, ∗) and xh = x+ x∗ ∈ Sym(e2R, ∗) and

2[k2, x] = [k2, 2x] = k[k, 2x] + [k, 2x]k = k[k, xh] + [k, xh]k = [k2, xh]

= k2xh − xhk2 = k2xh + kxhk − kxhk − xhk2 = [k, kxh + xhk] = 0

because kxh + xhk ∈ Skew(e2R, ∗). Therefore [k2, e2R] = 0 and k2 ∈ Z(e2R) ⊂
Z(R).

(2.2) If h ∈ Sym(C(R), ∗) is an idempotent such that ha ∈ Z(Skew(R, ∗)) then
(1 − e1)h ∈ AnnR(1)(IdR(1)([b,K(1)]) = (1 − v)R and therefore (1 − e1)h = (1 −
v)(1− e1)h = e2h, which implies that h = e1h+ (1− e1)h = (e1 + e2)h, proving (∗).

(2.3) There exist µ, γ ∈ Skew(C(R(2)), ∗) and τ ∈ Sym(C(R(2)), ∗) such that
c3 = µc2 + τc+ γ: For every x ∈ R(2), c ad3

c(x) + ad3
c(x)c = ad3

c(cx+xc) and, since
x = xk + xs for some xk ∈ Skew(R(2), ∗) and some xs ∈ Sym(R(2), ∗) (see 2.10),

c ad3
c(x) + ad3

c(x)c = c ad3
c(xk + xs) + ad3

c(xk + xs)c = c ad3
c(xs) + ad3

c(xs)c

= ad3
c(cxs + xsc) = 0,

so we have

0 = c ad3
c(x) + ad3

c(x)c = c4x− 2c3xc+ 2cxc3 − xc4. (I)

Now, by 4.1(a) and 3.2 applied to the Jordan element c2 of R(2) there exists
α ∈ C(R(2)) such that (c2 − α)2 = c4 − 2αc2 + α2 = 0. So if we substitute c4 in
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formula (I),

0 = c4x− 2c3xc+ 2cxc3 − xc4 = 2αc2x− 2αxc2 − 2c3xc+ 2cxc3.

Then, by 2.14, since IdR(2)(c3) ⊂ IdR(c) there exist µ, τ, γ ∈ C(R(2)) such that
c3 = µc2 + τc+ γ. Finally, if we decompose µ = µs + µk, τ = τs + τk, γ = γs + γk
with µs, τs, γs ∈ Sym(C(R(2)), ∗) and µk, τk, γk ∈ Skew(C(R(2)), ∗) (see 2.10) then
we can decompose µc2 +τc+γ in its symmetric and skew parts. Its symmetric part
is µsc

2 +τkc+γs and its skew part is µkc
2 +τsc+γk, but since c3 is skew-symmetric,

c3 = µkc
2 + τsc+ γk. For convenience let us rename µk as µ, τs as τ and γk as γ.

(3) The elements µ and γ make it possible to decompose c as an element of type
(iii) and some other element that we will call d, see (3.1). Initially d3 = τd but
indeed d3 = 0, see (3.3).

(3.1) For every λ ∈ Skew(C(R(2)), ∗) there exists αλ ∈ eλ Skew(C(R(2)), ∗) such
that

eλ(c− αλ)2 = (eλc− eλαλ)2 = 0,

where the idempotent eλ is defined in 2.10: By 4.1(b), λc is a Jordan element
of R(2) and therefore λ′λc = eλc is again a Jordan element of R(2). Now, by
3.2 and 2.11 there exists βλ ∈ Skew(C(R(2)), ∗) such that (eλc − βλ)2 = 0. So
0 = eλ(eλc − βλ)2 = (eλc − eλβλ)2, and αλ := eλβλ ∈ eλ Skew(C(R(2)), ∗) is the
desired element.

(3.2) There exist an idempotent w ∈ Sym(C(R(2)), ∗) and α ∈ Skew(C(R(2)), ∗)
such that c = wc+ (1−w)c with (wc−wα)2 = 0 and (1−w)c3 = (1−w)τc: Given
µ ∈ Skew(C(R(2)), ∗), by (3.1) there exists αµ ∈ eµ Skew(C(R(2)), ∗) such that
c = eµc+ (1− eµ)c with (eµc−αµc)2 = 0. If we multiply formula c3 = µc2 + τc+ γ
of (2.3) by 1− eµ we get

((1− eµ)c)3 = (1− eµ)τc+ (1− eµ)γ. (II)

Let us consider δ := (1 − eµ)γ ∈ Skew(C(R(2)), ∗). By (3.1) there exists αδ ∈
eδ Skew(C(R(2)), ∗) such that c = eδc + (1 − eδ)c with (eδc − αδc)

2 = 0, and
multiplying formula (II) by 1− eδ we get

((1− eµ)(1− eδ)c)3 = (1− eµ)(1− eδ)τc. (III)

Note that eδ, eµ are two central orthogonal idempotents such that c = eµc+ eδc+
(1−eµ−eδ)c with (eµc−αµ)2 = 0, (eδc−αδ)2 = 0 and (1−eµ−eδ)c = (1−eµ−eδ)τc

Putting w := eδ + eµ and α := αµ + αδ we have that (wc − α)2 = 0 and

(1 − w)c3 = (1 − w)τc. Since w ∈ Sym(C(R(2)), ∗), it is orthogonal to e1 and e2

and wc = wa.
We can decompose R as

R = e1R⊕ e2R⊕ wR⊕ (1− e1 − e2 − w)R,

so we can do as before and work with

R(3) := (1− e1 − e2 − w)R, K(3) := Skew(R(3), ∗), and

d := (1− e1 − e2 − w)a = (1− w)c.

Notice that d3 = τd and (1−w)τ ∈ Sym(C(R(3)), ∗). For convenience let us rename
(1− w)τ as τ .

(3.3) Let us prove that d3 = 0: If τ = 0 there is nothing to prove; otherwise
consider eτ , so that d = eτd+ (1− eτ )d with (1− eτ )d3 = 0 and eτd

3 = τd with τ
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an invertible element in eτR
(3). If we multiply formula (I) by (1 − e1 − e2 − w)eτ

and substitute eτd
3 = τd we get

0 = (1− e1 − e2 − w)eτ (c4x− 2c3xc+ 2cxc3 − xc4)

= eτ (d4x− 2d3xd+ 2dxd3 − xd4) = τ [d2, x].

So τd2 ∈ Z(R(3)) and since τ is invertible in R(3), eτd
2 ∈ Z(R(3)). Let us denote

ξ := eτd
2 ∈ Z(R(3)) ⊂ C(R(3)). Now, since eτd is a Jordan element of eτK

(3) we
have that, for every x ∈ K(3),

0 = ad3
eτd(x) = eτ (d3x− 3d2xd+ 3dxd2 − xd3)

= ξ(dx− 3xd+ 3dx− xd) = 4ξ[d, x].

So ξd ∈ Z(R(3)) ⊂ C(R) and therefore eξd ∈ C(R), which implies by (*) that
eξd = 0. Therefore 0 = ξd = eτd

3.
(4) Now we decompose d as two elements, one of type (iii) and the other one of

type (iv). There exists an idempotent w′ ∈ Sym(C(R(3)), ∗) such that d = w′d +
(1−w′)d with (1−w′)d2 = 0, w′d3 = 0: Given d2, by 2.15 there exists an idempotent
w′ ∈ Sym(C(R(3)), ∗) such that w′d2 = d2 and AnnR(3)(IdR(3)(d2)) = (1 − w′)R.
Therefore,

R(3) = w′R(3) ⊕ (1− w′)R(3)

and d = w′d+ (1− w′)d with (1− w′)d2 = 0 and w′d3 = 0.
(4.1) If w′d2 6= 0 then the local algebra associated to w′d2 is abelian and therefore

R satisfies a nonzero GPI: since 0 = ad4
w′d(K

(3)) = 6w′d2K(3)d2 and R is free of 2
and 3-torsion, w′d2K(3)d2 = 0. Now, for every x ∈ R(3),

w′d2(x− x∗)w′d2 = 0, i.e., w′d2xw′d2 = w′d2x∗w′d2.

Let us consider the local ring R
(3)
w′d2 = Rw′d2 of R(3) at w′d2, which is a semiprime

ring such that

w′d2(xw′d2y)w′d2 = w′d2(xw′d2y)∗w′d2 = w′d2(y∗)w′d2(x∗)w′d2

= w′d2yw′d2xw′d2.

Then Rw′d2 is a semiprime commutative ring, hence a PI ring and therefore R
satisfies the nonzero GPI

w′d2xw′d2yw′d2 = w′d2yw′d2xw′d2.

(5) Finally we gather all the previous information together. Take the orthogonal
idempotents e1, e2, e3 := (1−e1−e2)w+(1−e1−e2−w)(1−w′), e4 := (1−e1−e2−
w)w′. We have that e1 + e2 + e3 + e4 = 1. Given the set {a}, by 2.15 there exists
an idempotent e ∈ Sym(C(R), ∗) such that ea = a and AnnR(IdR(a)) = (1− e)R.
Define ê1 := ee1, ê2 := ee2, ê3 := ee3, ê4 := ee4 and ê5 := 1− e and decompose

R =

5⊕
i=1

Rêi.

Notice that this decomposition satisfies the claims of the theorem:

• ê1a is central in R by (1),
• ê2a is a central (skew) element of Skew(R, ∗), ê2R is a PI-algebra that

satisfies the standard identity S4, Skew(ê2R, ∗) is an abelian Lie algebra

and Skew(ê2R, ∗)2 ⊆ Z(R̂) by (2),
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• for the skew element λ := wα, (ê3a− ê3λ)2 = e(e3a−λ)2 = e(wc−wα)2 +
e(1− w′)d2 = 0 by (3) and (4),
• ê4a

3 = ew′d3 = 0, and if ê4 6= 0, ê4a
2 = ê4d

2 generates an essential ideal of
ê4R because it has zero annihilator, and R satisfies a nonzero GPI by (4),
and
• a = ea = ê1a + ê2a + ê3a + ê4a, ê5a = 0, and the ideal generated by a is

essential in
⊕4

i=1Rêi. �

If R is a centrally closed ∗-prime ring and a is a Jordan element of Skew(R, ∗),
since the idempotent e5 obtained in 4.2 belongs to the annihilator of IdR(a) in R,
which is a ∗-prime ideal of R, we get e5 = 0. Hence in this context we obtain the
four mutually exclusive possibilities of the next corollary.

Corollary 4.3. Let R be a centrally closed ∗-prime ring with involution ∗ free of
2 and 3-torsion and let K := Skew(R, ∗). Let a ∈ K be a Jordan element of K.
Then we have four mutually exclusive possibilities:

(i) a ∈ Z(R).
(ii) a ∈ Z(K)\Z(R), R is a PI-algebra and Skew(R, ∗) is an abelian Lie algebra.

(iii) There exists λ ∈ Skew(Z(R), ∗) such that a− λ is nilpotent of index 2.
(iv) a3 = 0, a2 6= 0 and R satisfies a nonzero GPI.

5. Jordan algebras of Lie algebras arising from associative rings

In this section we are going to describe the Jordan algebras associated to the Jor-
dan elements of the Lie algebras R− and Skew(R, ∗) for a centrally closed semiprime
ring R (with involution ∗) using the characterizations of these elements given in 3.2
and 4.2.

Lemma 5.1. Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let a ∈ R be a Jordan element. Then there exists a′ in R such that (R−)a ∼=
(Ra′)

+, i.e., the Jordan algebra of the Lie algebra R− at a is isomorphic to the
symmetrization of a local algebra of the ring R.

Proof. It is enough to consider a′ := a − λ with λ as given in 3.2, which satisfies
(a′)2 = 0. Then the map φ : (R−)a → (Ra′)

+ given by φ(x) := x̃ is an isomorphism
of Jordan algebras: φ is well defined, since if x = 0 then 0 = [a, [a, x]] = [a′, [a′, x]] =
−2a′xa′ and therefore φ(x) = 0̃. It is clear that φ is a C(R)-linear map. Now

φ(x • y) =
1

2
φ([x, [a, y]]) =

1

2
φ([x, [a′, y]]) = φ(x) • φ(y).

Clearly φ is onto, and if φ(x) = 0̃ we have 0 = a′xa′ = [a′, a′, x]] = [a, [a, x]] and
therefore x = 0. �

Now we turn to the description of the Jordan algebras at Jordan elements of
the skew elements of semiprime rings with involution. First we need some previous
results.

Lemma 5.2. Let R be a semiprime ring with involution ∗ free of 2-torsion, and
let h ∈ Sym(R, ∗) and k ∈ K := Skew(R, ∗) be such that hKh = hKk = 0 and h
generates an essential ideal in R. Then k = 0.
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Proof. Note that kKh = (hKk)∗ = 0. Let x, y ∈ R and decompose x = xk + xs
and y = yk + ys where xk, yk ∈ K and xs, ys ∈ Sym(R, ∗); then

hxkyh+ hykxh = hxskysh+ hyskxsh = h(xskys + yskxs)h = 0

since xskys+yskxs ∈ K and hKh = 0. Therefore by 2.14, since IdR(hxk) ⊂ IdR(h),
there exists λx ∈ C(R) such that

hxk = λxh.

Now suppose that x ∈ Sym(R, ∗). Then xkx ∈ K so hxkxk = 0 by hypothesis.
But 0 = (hxk)xk = λxhxk = λ2

xh, and since h generates an essential ideal in R,
λ2
x = 0 so λx = 0 and hxk = 0. Therefore 2hRk = hSym(R, ∗)k + hKk = 0 and

we get k = 0 by using again that h generates an essential ideal of R and that R is
free of 2-torsion. �

In the following proposition, although the results are valid for R, some of the
computations are actually carried in R̂.

Proposition 5.3. Let R be a semiprime ring with involution ∗ free of 2 and 3-
torsion and let a ∈ K := Skew(R, ∗) be a Jordan element such that a3 = 0 and a2

generates an essential ideal of R. Then

(a) For every k ∈ K we have that aka2 = a2ka.
(b) For every k ∈ K we have a2ka2 = 0.
(c) Ra2 is a semiprime commutative ring.
(d) For every x ∈ R there exists a unique λx ∈ Sym(C(R), ∗) such that a2xa2 =

λxa
2. Moreover, if ex := λx is an idempotent then there exists cx ∈

Sym(R̂, ∗) such that cx = excx, exa
2cxa

2 = exa
2, cxa

2cx = cx, c2x = 0
and exa = ex(a2cxa+ acxa

2).

In addition, if Q := Qsm(R) is the symmetric Martindale ring of quotients of R, I
is an ideal of R and we denote ∆I := {λx ∈ C(R) | ∃x ∈ I with a2xa2 = λxa

2},
then

(e) ∆I is a subring of C(R). Moreover, if C(R)I ⊂ I then ∆I is a von Neu-
mann regular ring.

(f) If I is an essential ideal of R then ∆Iq = 0 implies q = 0 for every q ∈ Q.

Proof. (a) Since a is a Jordan element, for every k ∈ K we have that 0 = ad3
a(k) =

a3k − 3a2ka + 3aka2 − ka3. Therefore, since R is free of 3-torsion and a3 = 0,
aka2 = a2ka.

(b) For every k ∈ K, by (a), a2ka2 = aka3 = 0.
(c) Let x̃ ∈ Ra2 be such that x̃ ◦ Ra2 ◦ x̃ = 0̃. Then for every ỹ ∈ Ra2 we have

that 0̃ = x̃ ◦ ỹ ◦ x̃ and so a2xa2ya2xa2 = 0 which implies, since R is semiprime,
that a2xa2 = 0 and x̃ = 0̃, i.e., that Ra2 is a semiprime associative ring. Moreover,
given x̃, ỹ ∈ Ra2 we have that x̃ ◦ ỹ − ỹ ◦ x̃ = (xa2y − ya2x) + Ker(a2) = 0̃ because
xa2y − ya2x ∈ K and, by (2), it is contained in Ker(a2).

(d) By (c), for every x, y ∈ R we have that

a2xa2ya2 = a2ya2xa2. (D)

Therefore by 2.14, since IdR(a2xa2) ⊂ IdR(a2) we have that there exists λx ∈ C(R)
such that

a2xa2 = λxa
2. (D′)
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Notice that λx is unique for every x ∈ R because a2 generates an essential ideal of
R. Since a2Ka2 = 0 we also obtain λx = λ∗x ∈ Sym(C(R), ∗) by taking involutions
in formula a2xa2 = λxa

2.
Now suppose that a2xa2 = exa

2 where ex := λx is an idempotent of C(R). Then

(exa
2)x(exa

2) = exa
2xa2 = (ex)2a2 = exa

2,

and since exa
2 is a nilpotent element of index 2, by 2.12 there exists cx ∈ Sym(R̂, ∗)

such that c2x = 0, (exa
2)cx(exa

2) = exa
2 and cx(exa

2)cx = cx. Moreover cx =
cx(exa

2)cx = ex(cx(exa
2)cx) = excx. Finally, for every k ∈ K,

ex(a2cxa+ acxa
2 − a)ka2 = ex(a2cxaka

2 + acxa
2ka2 − aka2)

= ex(a2cxa
2ka+ 0− aka2)

= ex(a2ka− aka2) = 0.

Therefore, since acxa + acxa
2 − a ∈ K, by 5.2 we have ex(a2cxa + acxa

2 − a) = 0
and exa = ex(a2cxa+ acxa

2).
(e) Let us consider now the symmetric Martindale ring of quotients Q := Qsm(R)

of R and an ideal I of R, and denote ∆I := {λx ∈ C(R) | ∃x ∈ I with a2xa2 =
λxa

2}. Given λx, λy ∈ ∆I there exist x, y ∈ I such that a2xa2 = λxa
2 and a2ya2 =

λya
2. Then

(λx + λy)a2 = a2xa2 + a2ya2 = a2(x+ y)a2 = λx+ya
2,

(λx · λy)a2 = λxa
2ya2 = a2xa2ya2 = λxa2ya

2.

Therefore λx + λy = λx+y ∈ ∆I and λx · λy = λxa2y ∈ ∆I . Now, if λx ∈ ∆I ,
a2xa2 = λxa

2 and for the unique element λ′x associated to λx in 2.10 we have that

λ′xa
2 = λ′xλ

′
xλxa

2 = (λ′x)2a2xa2 = a2((λ′x)2x)a2

and λ′x ∈ ∆I since C(R)I ⊆ I.
(f) Suppose that I is an essential ideal of R and take q ∈ Q such that ∆Iq = 0.

For such q there exists an essential ideal J of R such that Jq + qJ ⊂ R. Let
y ∈ I ∩ J and t := yq or t := qy. Given any x ∈ R and z ∈ I we have that
a2za2xt = λya

2xt = a2xλyt = 0. Therefore, since z is arbitrary in the essential ideal
I, the ideal generated by a2xt is a nilpotent ideal of R and hence IdR(a2xt) = 0.
Now a2xt = 0 for every x ∈ R implies that the ideal generated by t is orthogonal
to the ideal generated by a2, which is essential, so t = 0. Finally, since t = qy or
t = yq for an arbitrary y in an essential ideal of R, q = 0. �

Proposition 5.4. Let R be a centrally closed semiprime ring with involution ∗
free of 2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element such that
a3 = 0 and a2 generates an essential ideal of R. Let Q := Qsm(R) be the symmetric
Martindale ring of quotients of R. Then:

(a) Q is a semiprime ring with involution ∗ such that a is a Jordan element of
Skew(Q, ∗), a3 = 0 and a2 generates an essential ideal in Q.

(b) There exists c ∈ Sym(Q, ∗) such that a2ca2 = a2, ca2c = c, c2 = 0 and
a = a2ca+ aca2. In particular a2 is a von Neumann regular element of Q.

(c) The Jordan element a is von Neumann regular. In particular, the Jordan
algebra Skew(Q, ∗)a at the Jordan element a is unital with unit element
1a := ac+ ca.
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(d) For every x ∈ Skew(Q, ∗) there exists a unique µx ∈ Sym(C(R), ∗) such
that axa = µxa.

(e) Qa2 is isomorphic to C(R).

Proof. (a) By 2.8, Q is a semiprime ring with involution ∗. Let us prove some
properties:

(1) Let k ∈ Skew(Q, ∗) and let I be an essential ∗-ideal of R such that Ik +
kI ⊂ R. By 5.3(d), given any y ∈ I there exists λy ∈ Sym(C(R), ∗) such that
a2ya2 = λya

2, therefore if y = ys+yk where ys ∈ Sym(R, ∗) and yk ∈ K, by 5.3(b),
then

λya
2ka2 = (a2ya2)ka2 = a2(ysa

2k)a2 = a2(ysa
2k)∗a2 = −a2ka2ysa

2

= −a2ka2ya2 = −λya2ka2.

Thus ∆Ia
2ka2 = 0, which implies by 5.3(f) that a2ka2 = 0.

(2) Let us prove that a is a Jordan element of Skew(Q, ∗): Since R is a subring
of Q, a3 = 0 (in Q). Let k ∈ Skew(Q, ∗) and let I be an essential ∗-ideal of R such
that Ik + kI ⊂ R. By 5.3(d), given any y ∈ I there exists λy ∈ C(R) such that
a2ya2 = λya

2. Therefore, by (1) and 5.3(a),

λya
2ka = a2ya2ka = a2(ya2k + ka2y∗)a = a(ya2k + ka2y∗)a2 = aka2y∗a2

= aka2ya2 = λyaka
2.

Thus ∆I(a
2ka − aka2) = 0, which implies, by 5.3(f), that a2ka = aka2. Finally,

for every k ∈ Skew(Q, ∗) we have

ad3
a(k) = a3k − 3a2ka+ 3aka2 − ka3 = 0

and hence a is a Jordan element of Skew(Q, ∗). Furthermore, given a nonzero ideal
I of Q, I ∩ R is nonzero. Therefore I ∩ R ∩ Ra2R 6= 0 since Ra2R is an essential
ideal of R, which implies that Qa2Q is an essential ideal of Q.

(b) By 5.3(e) we know that ∆R := {λ ∈ C(R) | ∃x ∈ R with a2xa2 = λa2}
is a von Neumann regular subring of C(R). Now consider a maximal family of
orthogonal idempotents {ei}i∈I of ∆R.

(b1) J :=
⊕

i∈I Rei is an essential ideal of R: First notice that given any λ ∈ ∆R

such that λei = 0 for every i ∈ I we have that λ = 0, since otherwise, since ∆R is
von Neumann regular, there exists λ′ ∈ ∆R such that λλ′ is an idempotent of ∆R

orthogonal to every ei, a contradiction. Now, if z ∈ R satisfies zJ = 0, then zRei =
0 for every i ∈ I and therefore eiz = 0. Moreover a2RzRa2ei = a2RzeiRa

2 = 0,
which implies, since by 5.3(d) a2RzRa2 = Λa2 with Λ ⊂ C(R), that Λeia

2 = 0
and hence that Λei = 0 for all ei since a2 generates an essential ideal in R. Hence
Λ = 0. Therefore a2RzRa2 = 0 and, since a2 generates an essential ideal, a2Rz = 0
(because it is orthogonal to the ideal generated by a2) and again z = 0. Therefore
J is an essential ideal of R.

(b2) Let us consider f :
⊕

i∈I Rei → R defined by f(
∑
aiei) =

∑
aici, where ci is

a twin of eia
2 as given in 5.3(d). Then c := [

⊕
i∈I Rei, f ] ∈ Q satisfies a2ca2 = a2,

since by construction cei = ci and therefore (a2ca2 − a2)ei = 0 for each ei, so
(a2ca2 − a2)I = 0 with I being essential. Similarly c2 = 0, ca2c = c ∈ Sym(Q, ∗)
and a = a2ca+ aca2.
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(c) Notice that for any x̄ ∈ Skew(Q, ∗)a we have that 1a• x = [[ac+ ca, a], x] = x
because ad2

a([[ac+ ca, a], x]) = ad2
a(x), since

[a, [a, [[ac+ ca, a], x]]] = [a, [[a, [ac+ ca, a]], x]] + [a, [[ac+ ca, a], [a, x]]]

=(1) [a, [[a, [ac+ ca, a]], x]] =(2) [[a, [ac+ ca, a], [a, x]]]

=(3) [a, [a, x]],

where (1) [a, [[ac+ ca, a], [a, x]]] = 0 by [13, Lemma 2.3(iv)], (2) because a is Jordan
and (3) [a, [ac+ ca, a]] = a follows from (b).

(d) Given any t ∈ Skew(Q, ∗) we have

ata = (a2ca+ aca2)t(a2ca+ aca2)

= a2cata2ca+ aca2ta2ca+ a2cataca2 + aca2taca2

= a2(cat+ tca)a2ca+ 0 + 0 + aca2(cat+ tca)a2

= µta
2ca+ µtaca

2 = µta

because a3 = 0, a2 Skew(Q, ∗)a2 = 0, a2taca2 = a2(tac)∗a2 = a2cata2 and there
exists a unique µt ∈ Sym(C(R), ∗) such that a2(cat + tca)a2 = µta

2 by (a) and
5.3(b),(d) taking Q as the ring of the statement.

(e) Let us consider the homomorphism of rings Φ : C(R) → Qa2 defined by

Φ(λ) := λ̃c, where c is as given in (b). Let us prove that Φ is an isomorphism:

if Φ(λ) = 0̃ then 0̃ = λ̃c and therefore 0 = a2(λc)a2 = λa2, which implies that
a2Rλ = 0 and therefore λ is orthogonal to the ideal generated by a2, i.e., λ = 0.
Finally, given any x̃ ∈ Qa2 , by (a) and 5.3(d) taking Q as the ring of the statement,

we have that a2xa2 = λxa
2 = a2(λxc)a

2 and therefore x̃ = λ̃xc = Φ(λx) in Qa2 . �

Corollary 5.5. Let R be a centrally closed semiprime ring free of 2 and 3-torsion
and let Qsm(R) be the symmetric Martindale ring of quotients of R. Then:

(1) If a ∈ R is a Jordan element of R then a is a Jordan element of Qsm(R).
(2) If ∗ is an involution on R, K := Skew(R, ∗) and a is a Jordan element of

K, then a is a Jordan element of Skew(Qsm(R), ∗).

Proof. (1) If a is a Jordan element of R then by 3.2 there exists α ∈ C(R) such
that (a− α)2 = 0. Therefore a is a Jordan element of Qsm(R).

(2) Following the notation of Theorem 4.2 there exist four orthogonal idempo-
tents {ei}4i=1 contained in Sym(C(R), ∗) such that a = e1a+ e2a+ e3a+ e4a and:

(2.1) e1a ∈ C(R) and therefore e1a ∈ Z(Qsm(R)) and e1a is a Jordan element of
Skew(Qsm(R), ∗) (in fact it is a Jordan element of Qsm(R)).

(2.2) e2a ∈ Z(Skew(R, ∗)), e2R is a PI-algebra that satisfies the standard identity
S4, and Skew(e2R, ∗) is an abelian Lie algebra. Let us prove that the Lie algebra
Skew(e2Q

s
m(R), ∗) is abelian too: Since e2Q

s
m(R) is the Martindale symmetric ring

of quotients of e2R, we have that e2Q
s
m(R) is a general left (or right) ring of quo-

tients of e2R, see [23, Definition 13.10 and Proposition 14.7]. Therefore, since e2R is
a PI-algebra, by Rowen’s Theorem ([31, Theorem 2]), 0 6= [p, q] ∈ Skew(e2Q

s
m(R), ∗)

implies that there exists λ ∈ Z(e2R) ⊂ C(R) such that λp, λq ∈ Skew(e2R, ∗) and
λ[p, q] 6= 0. Pick a partner λ′ ∈ Z(R) of λ as in 2.10. Then λ[p, q] = λλ′λ[p, q] =
λ′[λp, λq] = 0, a contradiction. Therefore Skew(e2Q

s
m(R), ∗) is an abelian Lie alge-

bra and e2a is a Jordan element of Skew(Qsm(R), ∗).
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(2.3) There exists a unique λ ∈ Skew(C(R), ∗) such that (e3a−e3λ)2 = 0 and e3a
is a Jordan element of Skew(Qsm(R), ∗) (in fact, it is a Jordan element of Qsm(R)).

(2.4) If e4a 6= 0 then (e4a)3 = 0 satisfies 5.4(a) and therefore it is a Jordan
element of Skew(Qsm(R), ∗).

In conclusion a =
∑4

1=1 eia is a Jordan element of Skew(Qsm(R), ∗). �

The next result is a generalization of [13, Theorem 3.3].

Proposition 5.6. Let R be a centrally closed semiprime ring with involution ∗
free of 2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element. Let us
suppose that there exists λ ∈ Z(R) such that (a − λ)2 = 0. Then Ka

∼= Ka−λ ∼=
Sym(Ra−λ, ∗).

Proof. Clearly, by construction Ka
∼= Ka−λ. Moreover, if we denote b := a−λ then

the map Φ : Kb → Sym(Rb, ∗) defined by Φ(x) := x̃ is an isomorphism of Jordan
algebras:
• Φ is well defined: If x = y ∈ Kb then x− y ∈ Ker(b) and therefore 0 = [b, [b, x−
y]] = −2b(x− y)b (because b2 = 0), which implies that x̃ = ỹ ∈ Rb. In addition, if

x ∈ K then (x̃)∗ = −̃x∗ = x̃ and therefore Φ(x) ∈ Sym(Rb, ∗).
• Φ is a homomorphism of Jordan algebras:

(1) Φ(x+ y) = Φ(x+ y) = x̃+ y = x̃+ ỹ

(2) Φ(x • y) = Φ([x, [b, y]]) = x̃by − x̃yb− b̃yx+ ỹbx = x̃by + ỹbx = x̃ • ỹ
because x̃yb+ b̃yx = 0̃ since b2 = 0.
• Φ is an isomorphism: If Φ(x) = 0̃ then 0 = −2bxb = [b, [b, x]] and therefore

x = 0 ∈ Kb. Now let x̃ ∈ Sym(Rb, ∗). Then x̃ = x̃∗ = −̃x∗ and hence bxb = −bx∗b
and x+ x∗ ∈ Ker(b). Therefore Φ(x−x

∗

2 ) = x̃−x∗
2 = 1

2 x̃+ 1
2 (x̃)∗ = x̃. �

Proposition 5.7. Let R be a centrally closed semiprime ring with involution ∗
free of 2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element such that
a3 = 0, a2 generates an essential ideal and there exists c ∈ Sym(R, ∗) such that
a2ca2 = a2, ca2c = c, c2 = 0 and a = a2ca + aca2. Then Ka is a nondegenerate
Jordan algebra of quadratic form.

Proof. Note that Ka is a unital Jordan algebra with unit element 1a := ac+ ca
(see the proof of 5.4(c)).

The map 〈·, ·〉′ : K × K → Z(R)a defined by 〈x, y〉′ := a{x, y, a}a = axya2 +
a2yxa is bilinear and symmetric: By the proof of 5.4(d), a{x, y, a}a ∈ Z(R)a, and
it is bilinear. Moreover, by 5.3(a)

a{x, y, a}a = axya2 + a2yxa = a[x, y]a2 + a2[y, x]a+ ayxa2 + a2xya

= a[x, y]a2 + a[y, x]a2 + ayxa2 + a2xya

= 0 + a{y, x, a}a.

(1) The map 〈·, ·〉 : Ka × Ka → Z(R) defined by 〈x, y〉 := µxy where µxy is
the unique element of Z(R) that satisfies a{x, y, a}a = µxya is a nondegenerate
symmetric bilinear form on Ka:

In order to prove that the map is well defined let us show that, if x ∈ K, then
[a, [a, x]] = 0 if and only if a2x + xa2 = 0 or, equivalently, if and only if axa = 0:
If [a, [a, x]] = 0 then 2axa = a2x + xa2, so if we multiply by a on the left we get
2a2xa = axa2 and hence by the proof of 5.4(d) it is 2µxa

2 = µxa
2, which implies,
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since a2 generates an essential ideal, that µx = 0, i.e., axa = 0 and therefore
a2x + xa2 = 0. Now, if a2x + xa2 = 0, multiplying by a on the left we get that
axa2 = 0. Therefore µxa

2 = 0 and µx = 0. Then axa = 0 and [a, [a, x]] = 0.
Now let y ∈ K be such that [a, [a, y]] = 0. Hence aya = 0 and a2y + ya2 = 0.

Thus

a{x, y, a}a = ax[y, a]a+ axaya+ a[a, y]xa+ ayaxa = ax[y, a]a+ a[a, y]xa

= ax[[y, a], a] + axa[y, a] + [a, [a, y]]xa+ [a, y]axa

= axa[y, a] + [a, y]axa = −axa2y − ya2xa = −axa(a2y + ya2) = 0.

Therefore, since 〈·, ·〉′ is bilinear and symmetric, if y = z then 〈a, y〉 = 〈a, z〉 and
〈y, a〉 = 〈a, y〉 = 〈a, z〉 = 〈z, a〉, which implies that this form is well defined and
therefore bilinear and symmetric.

Finally, if there exists b ∈ Ka such that for every x ∈ Ka we have that 〈b, x〉 = 0,
then b = 0: By hypothesis a2bxa + axba2 = 0 and if we multiply by a we get
a2xba2 = 0 for every x ∈ K. Now, a2Ka2 = 0 by 5.3(b) and, since we also have
a2K(ba2 + a2b) = 0, by 5.2 ba2 + a2b = 0 and hence [a, [a, b]] = 0.

(2) For every x ∈ K we can define T (x) := 〈x, 1a〉. Note that 〈x, 1a〉 =
〈x, ac+ ca〉 = µx where µx is the unique element of Z(R) such that axa = µxa:

〈x, ac+ ca〉′ = ax(ca+ ac)a2 + a2(ca+ ac)xa = axaca2 + a2caxa

= µx(aca2 + a2ca) = µxa.

In particular T (1a) = 1 because µac+caa = a(ac+ ca)a = a2ca+ aca2 = a.
(3) For every λ ∈ Z(R) we have that λ∗ = λ. In particular K is a Z(R)-

submodule of R: if this is not the case there exists 0 6= λ ∈ Skew(Z(R), ∗). Since we
know that a2Ka2 = 0 by 5.3(b), we have that λa2(Sym(R, ∗)λ)a2 ⊆ λa2Ka2 = 0.
Hence λa2Rλa2 = 0 and so λa2 = 0. Since a2 generates an essential ideal this
implies λ = 0.

(4) Now, W := {x ∈ Ka | T (x) = 0} is a submodule of Ka such that

Ka = W ⊕ Z(R)1a

because for any x ∈ Ka we have that x = (x− T (x)1a) + T (x)1a.
(5) If v, w ∈W , then v ◦ w = µwv1a: since ava = awa = 0 we have

[a, [a, [[v, a], w]]] = a2vwa+ awva2 = a{w, v, a}a = µwva = µwv[a, [a, ac+ ca]].

Therefore Ka is a nondegenerate Jordan algebra of quadratic form associated to
the nondegenerate symmetric bilinear form given in (1). �

Theorem 5.8. Let R be a centrally closed semiprime ring with involution ∗ free
of 2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element. Let Qsm(R)
be the symmetric Martindale ring of quotients of R. Then there exist two idem-
potents e, f ∈ Sym(C(R), ∗) that decompose Qsm(R) as a sum of three orthogo-
nal ideals Qsm(R) = eQsm(R) ⊕ fQsm(R) ⊕ (1 − e − f)Qsm(R), and an element
λ ∈ eSkew(C(R), ∗) such that a = ea+ fa+ (1− e− f)a ∈ K := Skew(Qsm(R), ∗),
Ka ∼= Kea ⊕K(1−e−f)a and

(i) Kea ∼= Kea−eλ ∼= Sym(Qsm(R)ea−eλ, ∗).
(ii) K(1−e−f)a is a nondegenerate Jordan algebra of quadratic form.
(iii) Kfa = 0.
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Proof. Let us denote Q := Qsm(R). By 5.5, a is a Jordan element of Q and therefore
by 4.2 and following its notation there exist two idempotents e := e3, f := e1 +e2 ∈
Sym(C(R), ∗) and λ ∈ eSkew(C(R), ∗) such that fa ∈ Z(K), (ea − eλ)2 = 0 and,
if e+ f 6= 1, then (1− e− f)a is nilpotent of index 3 and ((1− e− f)a)2 generates
an essential ideal in (1− e− f)Q.

(i) Consider Q1 := eQ, which is again a semiprime ring with involution ∗ free
of 2 and 3-torsion. Notice that it is the symmetric Martindale ring of quotients
of eR. Then ex ∈ Skew(Q1, ∗) is a Jordan element. Now (ea − eλ)2 = 0 implies
by 5.6 that Skew(Q1, ∗)ex ∼= Skew(Q1, ∗)ea−eλ ∼= Sym((Q1)ea−eλ, ∗). Moreover
(Q1)ea−eλ ∼= Qea−eλ, Skew(Q1, ∗)ea ∼= Kea and Skew(Q1, ∗)ea−eλ ∼= Kea−eλ.

(ii) Consider Q2 := (1−e−f)Q, which is again a semiprime ring with involution ∗
free of 2 and 3-torsion. Notice that it is the symmetric Martindale ring of quotients
of (1− e−f)R and therefore is centrally closed. Then (1− e−f)a ∈ Skew(Q2, ∗) is
a Jordan element such that (1− e− f)a is nilpotent of index 3 and ((1− e− f)a)2

generates an essential ideal in Q2. Now, by 5.4(b) there exists c ∈ Sym(Q2, ∗) such
that (1− e−f)a2ca2 = (1− e−f)a2, (1− e−f)ca2c = c, c2 = 0 and (1− e−f)a =
(1− e− f)(a2ca+ aca2) and thus, by 5.7, Skew(Q2, ∗)(1−e−f)a is a nondegenerate
Jordan algebra of quadratic form. Moreover Skew(Q2, ∗)(1−e−f)a

∼= K(1−e−f)a.
(iii) Since fa ∈ Z(K) we have that Ker(fa) = K and hence Kfa = 0. �

The next result is a corollary in the case that R is a prime ring. Note that in
this case it is not necessary to extend the ring to its Martindale ring of quotients
to determine the structure of the Jordan algebra associated to the Jordan element.
Case (ii) corresponds to [9, Theorem 4.7].

Corollary 5.9. Let R be a centrally closed ∗-prime ring with involution ∗ free of
2 and 3-torsion and let a ∈ K := Skew(R, ∗) be a Jordan element. Then we have
one of the next mutually exclusive possibilities:

(i) There exists λ ∈ Skew(C(R), ∗) such that (a− λ)2 = 0 and therefore Ka
∼=

Ka−λ ∼= Sym(Ra−λ, ∗).
(ii) a3 = 0, a2 6= 0 and Ka is a Clifford Jordan algebra.
(iii) a ∈ Z(K) but a 6∈ Z(R) and therefore Ka = {0}.

Proof. By 4.3 we have three possibilities:
(1) Cases (i) and (iii) of 4.3: There exists λ ∈ Skew(C(R), ∗) such that (a−λ)2 =

0 and therefore by 5.6 we have that Ka
∼= Ka−λ ∼= Sym(Ra−λ, ∗). Note that case

(i) implies that Ka = {0}.
(2) Case (iv) of 4.3: We have that a3 = 0 and a2 generates an essential ideal

of R. By 5.3(d), since R is semiprime, there exist x ∈ R and λx ∈ Sym(C(R), ∗)
such that 0 6= a2xa2 = λxa

2. Consider the partner λ′x of λx given in 2.10. Now,
a2λ′xxa

2 = λ′xλxa
2 = a2 (because 1 is the only nonzero symmetric idempotent in

C(R), since R is ∗-prime). Now, again by the proof of 5.3(d) there exists c ∈
Sym(R, ∗) such that a2ca2 = a2, ca2c = c, c2 = 0 and a = (a2ca + aca2). Finally,
since C(R) is a field, 5.7 proves that Ka is a Clifford Jordan algebra (see 2.2).

(3) Case (ii) of 4.3: We have that a ∈ Z(K) and it is not contained in Z(R).
Then R is a PI-algebra that satisfies the standard identity S4 and K is an abelian
Lie algebra. In particular Ka = {0}. �
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