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Abstract: Evaluating prosodic quality poses unique challenges due to the intricate nature of prosody,
which encompasses multiple form–function profiles. These challenges are more pronounced when
analyzing the voices of individuals with Down syndrome (DS) due to increased variability. This
paper introduces a procedure for selecting informative prosodic features based on both the disparity
between human-rated DS productions and their divergence from the productions of typical users,
utilizing a corpus constructed through a video game. Individual reports of five speakers with
DS are created by comparing the selected features of each user with recordings of individuals
without intellectual disabilities. The acquired features primarily relate to the temporal domain,
reducing dependence on pitch detection algorithms, which encounter difficulties when dealing
with pathological voices compared to typical ones. These individual reports can be instrumental in
identifying specific issues for each speaker, assisting therapists in defining tailored training sessions
based on the speaker’s profile.

Keywords: down syndrome; automatic classification; prosody

1. Introduction

Prosody plays a crucial role in speech communication, as it encompasses various
essential functions, including grouping linguistic units, pausing, word accentuation, and in-
dicating sentence purposes (such as interrogative, imperative, declarative, or exclamatory),
as well as conveying emotions and pragmatics [1]. In the field of automatic speech process-
ing, prosody has been examined through various types of predictor variables, including
high-performance power features and leverage features [2].

Inadequate control or improper production of prosody can lead to social stigmatization
and limit individuals’ integration into society [3]. This situation may apply to individuals
with intellectual disabilities in general and specifically to those with Down syndrome (DS),
as they often face challenges in language control and prosodic expression, with some excep-
tions [4–6]. Regarding prosody, Kent and Vorperian [5] have observed disfluencies such as
stuttering and cluttering, as well as difficulties in perceiving, imitating, and spontaneously
producing prosodic features. Additionally, Heselwood et al. [7] have linked certain speech
errors to struggles in identifying boundaries between words and sentences. Other work
showed that individuals with Down syndrome (DS) may exhibit mixed patterns of speech
production, potentially impacting speech intelligibility [8], using perceptual and acoustic
evaluation. In a previous work, we conducted perceptual and automatic identification tests
based on signal analysis, finding differences between the voices of individuals with DS and
typical speakers [9].

Several learning games and software tools have been developed specifically for in-
dividuals with intellectual disabilities to enhance specific skills [10–13]. Voice therapists
employ methods to address speech difficulties in individuals with specific speech prob-
lems [14]. Some of these methods have been partially implemented as software tools,
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serving as aids for therapists to work with their patients or enabling patients to engage in
supplementary exercises independently [15]. In our previous work [16], we introduced
a tool designed to train prosody and pragmatics in individuals with Down syndrome
(DS). This tool incorporates a combination of perceptual and production activities within a
graphic adventure video game, featuring an adapted interface that considers the unique
characteristics of individuals with Down syndrome, such as poor short-term memory [4],
attention deficits [17], information integration challenges, and language development
deficits [18]. Thus far, the video game has been successfully used by real users, with the
support of an adult, such as a therapist, teacher, or family member. The tool has facili-
tated the collection of a speech corpus consisting of individuals with Down syndrome.
The main objective of the research described in this paper is to analyze the potential of these
recordings for training an automatic assessment system. In the near future, this system will
be incorporated into the video game, allowing users to train independently. A detailed
description of the oral activities can be found in [19].

In the existing literature, there have been several studies on the automated evaluation
of speech quality in atypical voices [20–22]. Nevertheless, in computer-assisted pronun-
ciation training, the goal is not just to assess but also to provide information about the
underlying reasons behind judgments, whether correct or incorrect. In [8] authors investi-
gated the influence of various components of speech production on speech intelligibility
in individuals with DS. In addition, the speech disorders in DS speakers are not uniform,
emphasizing the need to consider and address individual variations when developing
treatment approaches [23].

In a related study [24], we examined the feasibility of evaluating the oral productions
of individuals with DS in terms of quality. We achieved over 90% accuracy in identifying
DS speech using an SVM classifier [9]. However, when it came to assessing the quality
of the oral productions, we only achieved approximately 78.5% accuracy using the same
training feature set and classifier. The evaluation focused mainly on evaluating prosodic
quality, covering factors such as intonation, accent, and phrasing. The assessment of these
aspects was conducted at two levels: correct or incorrect. In this paper, we delve into an
analysis of the training data used in our previous studies to gain insights into the reasons
behind this discrepancy in classification performance. Our findings not only shed light
on the factors contributing to these performance differences but also provide valuable
indications for exploring alternative approaches in future research endeavors.

In this paper, we undertake a systematic analysis of the prosodic features present in the
utterances of the corpus to identify the most informative features and their corresponding
values for predicting the quality of oral productions. To achieve this, we pose the following
research questions:

• RQ1: Is it possible to select prosodic features by integrating information about prosodic
quality and differences between types of speakers?

• RQ2: Can specific issues of a user be identified using the extracted features?

To answer these questions, we introduce a novel feature selection procedure that
integrates information derived from the distinctions between correctly and incorrectly
pronounced DS utterances, based on evaluations performed by human experts, and the
differences between the utterances produced by DS speakers and those of typical speakers
(further elaborated in Section 2.3). As a result, the significance of the selected features
becomes more straightforward to convey when explaining potential limitations of the
specific speakers under examination (as presented in Section 3 and discussed in Section 4).

The paper is organized as follows. The Section 2 provides detailed information
about the compiled corpus and the manual evaluation of the utterances. Additionally,
it presents the procedure used for the individual analysis of various prosodic features.
The Section 3 presents the selected prosodic features and their effectiveness in modeling
the quality of utterances, considering human scores as the basis for evaluation. Finally,
the Section 4 encompasses an examination of limitations encountered during the study,
proposes potential avenues for future research, and draws overall conclusions.
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2. Materials and Methods

Figure 1 shows the scheme of the experimental procedure followed in this work. The
recordings of speakers with Down syndrome are collected while users play a learning
game to improve their pronunciation abilities following indications of an avatar inside the
game and under the supervision of a therapist. A simplified version of the video game
is used to record a mirror corpus of typical development (TD) speakers, as described in
Section 2.1. The recordings of the speakers with DS are evaluated offline by a prosodic
expert, as described in Section 2.2. A set of prosodic features are extracted from audio
files and an original procedure for selecting the most relevant ones is applied, as described
in Section 2.3. Finally, we use reference intervals and confidence intervals of the selected
variables in typical speakers to build personalized reports about the particular deficits of
the speakers with DS when producing the activities, as described in Section 2.5.

Figure 1. Experimental procedure diagram.

2.1. Corpus Recording

The recorded data for this study were obtained from a graphic adventure video
game [16] that engages users in activities designed to help improve perception and produc-
tion of prosodic cues. Users are required to perform these activities in order to progress in
the game. These activities target various language functions such as questioning, expressing
opinions, and social interaction. Additionally, different prosodic functions, such as chunk-
ing or prominence, are employed in different production modes such as reading, elicited
speech, or free speech. All oral productions and user interactions were recorded and catego-
rized based on the specific activity and speaker during gameplay. The corpus was compiled
from various software testing and user training sessions. It contains 2151 recordings of
people with Down syndrome, produced by 42 different speakers. In addition, the corpus
contains recordings of the game recorded by 30 individuals without Down syndrome,
totaling 1589 utterances. In order to diminish background noise during the recording phase,
the performers utilized a headset equipped with an integrated microphone (specifically,
the Plantronics USB headset). This headset recorded audio in MS-WAVE PCM format at a
frame rate of 44,100 Hz, with 16 bits per sample, and in a mono configuration. The incorrect
or highly noisy audio files were removed, but no further processing was conducted on
them. Additional information can be found in [19].

Out of the 966 evaluated recordings (see Section 2.2), 605 belong to the same 5 users,
and these users had more than 40 utterances each. These 5 speakers provide enough infor-
mation about the potential of the proposed methodology and facilitate an individualized
analysis of each one. Detailed information regarding the speakers’ gender, age, and cogni-
tive abilities can be found in Table 1. To obtain this information about the speakers’ profile,
a Spanish version PEPS-C test [25] was used. This test aims to evaluate prosodic compe-
tence across multiple dimensions. It assesses both the form, which includes perceptual
and motor abilities, and the function, which encompasses cognitive comprehension and
expressive capabilities. Additionally, it evaluates both receptive (input) and expressive
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(output) skills. This corpus is referred to as θDS. To compare the voices of individuals
with Down syndrome to those of typical speakers, we used the subset of the corpus with
recordings from typical speakers. We named this corpus θTD.

Table 1. Description of the informants analyzed in this study. The table displays the following infor-
mation for each speaker: chronological age (CA), verbal mental age (VA), short-term verbal memory
(STVM), and non-verbal cognitive level (NVCL). The ages are denoted in months. Furthermore,
it includes the mean percentage of success in perception (MPercT) and production (MProdT) for
PEPS-C tasks. The table is completed with the percentage of sentences classified as right in the offline
evaluation (OLRight) and the total number of audio recordings of each speaker (#Audios).

Speaker Gender CA VA STVM NVCL MPercT MProdT OLRight #Audios

022 f 195 84 94 17 69.79% 48.30% 72% 120
023 m 204 99 134 18 76.04% 72.10% 76% 106
024 f 178 96 78 20 73.96% 74.65% 80% 97
025 m 190 60 below 74 10 60.42% 49.76% 57% 131
026 m 223 69 below 74 13 56.25% 45.70% 51% 151

2.2. Human-Based Quality Evaluation

The samples collected in the gaming sessions have been evaluated by four different
annotators at different stages of the project [19]. Two of the assessments were made during
the gaming process, another was carried out by a prosody expert outside the gaming
environment, and the last was made by an automatic classifier. The perceptual evaluation
of audio quality is always a problematic issue due to the high degree of disagreement among
annotators [26–28]. In our case, the task is particularly difficult due to speech characteristics
and the fact that evaluators tend to consider the speakers’ abilities (especially in online
judgments). In order not to add noisy information in the models’ training, we used the
annotations from the prosody expert, to whom we assign a reference value, since they were
involved in the game design.

The evaluations were conducted using a binary judgment, indicating whether the
utterance should have been repeated or not. The expert followed specific decision criteria
tailored to the proposed activity. The assessment depended solely on subjective judgments
without employing any acoustic analysis of the sentences. Additionally, potential shortcom-
ings in the pronunciation of individual sounds (segmental component) were not taken into
account. The evaluation process involved playing audio recordings consecutively, allowing
the expert to listen to each utterance multiple times before delivering their judgment. Even
when dealing with speakers exhibiting significant issues in clarity, the primary criterion
was whether the intonation closely resembled the anticipated one. These criteria included
assessing the conformity to the expected intonation pattern, maintaining the distinction
between stressed and unstressed syllables for lexical stress, differentiating accented and
unaccented syllables for accentuation, and ensuring appropriate organization into prosodic
groups while distinguishing between function and content words for phrasing. Based
on these assessments, the corpus θDS was divided into two subsets: θR, denoting correct
productions, and θW , denoting incorrect productions.

2.3. Processing and Selection of Prosodic Features

The acoustic features from each recording in the corpus were extracted using the
openSmile toolkit [29]. For feature extraction, the GeMAPS feature set [30] was chosen due
to its comprehensive collection of acoustic and prosodic features. This feature set was used
in automatic emotion detection [31] and in our previous works [9]. GeMAPS encompasses
frequency-related features, energy-related features, and temporal features. To capture
the variation along the utterance, the arithmetic mean and coefficient of variation were
calculated for each feature.
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Additionally, four extra temporal features were included: silence percentage, sounding
percentage, silences per second, and the mean length of silences. These additional features
were derived using the silences and sounding intervals identified by the Praat software
(2006) [32], which utilizes an intensity threshold along with minimum silent and sounding
interval durations to detect these intervals (default values were used). In total, a set of
92 features was employed, including 10 from the frequency domain, 10 from the energy
domain, 11 from the temporal domain, and 61 from the spectral domain. A detailed
description of these features can be found in [9].

U is the set of utterances in the corpus, with U = θTD ∪ θR ∪ θW , where θTD are
the utterances of typical speakers and θR or θW the utterances of speakers with Down
syndrome, judged as right or wrong by the evaluator. Every u ∈ U is characterized as
u = ( f1, f2, f3, . . . fN), where fi is a feature computed in the previous stage. The distribution
of values of the feature fi in a subset s of U is referred to as pd f (s, fi), and its corresponding
mean as µ(s, fi), where s could be the samples of a single speaker or the ones of a subset
θTD, θW , or θR. Algorithm 1 describes the process of selecting the most appropriate features
for visualizing the particular problems of the speakers. For a feature f to be included in the
set of selected features, two conditions should be fulfilled:

1. Separation: Statistical analysis using the Mann–Whitney test with a p-value threshold
of less than 0.01 is applied to determine if there are significant differences between the
values of f in the groups θR (right utterances) and θW (wrong utterances). This crite-
rion ensures that clear distinctions between right and wrong utterances are observed.

2. Consistency: Let µ(θTD, f ) represent the mean value of feature f in the group θTD
(typical speakers), µ(θR, f ) represent the mean value in the group θR, and µ(θW , f )
represent the mean value in the group θW . For a feature to be selected, it must
satisfy the condition |µ(θTD, f )− µ(θR, f )| < |µ(θTD, f )− µ(θW , f )|. This criterion
ensures that right utterances are closer to the typical speakers’ feature value than
wrong utterances.

Algorithm 1: Selection of the most appropriate features for visualizing specific
problems of the speakers. The sigDiff function determines whether there are
statistically significant differences between two given distributions.

input :U the set of utterances
output :sF the selected features
F ← { f1, f2, f3, . . . fN};
sF ← ∅;
// Separation
forall f in F do

if sigDi f f (pd f (θR, f ), pd f (θW , f )) then
sF ← sF ∪ { f };

end
end
// Consistency
forall f in sF do

if |µ(θTD, f )− µ(θR, f )| ≥ |µ(θTD, f )− µ(θW , f )| then
sF ← sF− { f };

end
end
return sF

2.4. Automatic Classification

In order to demonstrate the validity of the feature selection procedure, we conducted
some experiments to check the classification power of the selected features to predict
prosodic quality of the 605 selected recordings. We used the Weka machine learning
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toolkit [33]. To compare their performance, we employed three distinct classifiers that have
shown success in similar classification tasks in our previous work: the C4.5 decision tree
(DT), the multilayer perceptron (MLP), and the support vector machine (SVM). Given the
size of the dataset, we used the default hyperparameters provided by the Weka software
Version 3.8.6. The DT employed hyperparameters with a confidence threshold for pruning
set at 0.25 and a minimum number of instances per leaf set at 2. For the SVM, a normalized
polynomial kernel with an exponent of 2 was utilized. The complexity constant (C) was
configured to 1, the tolerance parameter was established at 0.001, and the epsilon for
round-off error was defined as 1.0× 10−12. Regarding the MLP architecture, it featured a
single hidden layer with a number of neurons determined by the sum of input features and
output classes divided by 2. The learning rate was set to 0.3, the momentum rate to 0.2,
and the training proceeded for 500 epochs. To construct the training and testing sets, we
implemented the leave-one-speaker-out cross-validation technique. The idea is to leave out
one entire speaker’s data as the test set in each iteration while training the model on the
remaining data. This process is repeated for each speaker in the dataset. These classifiers
used the label defined by the expert for the assessment of speech quality. In addition to
verifying the effectiveness of the selected features in classifying the quality of the recordings,
the use of automatic classifiers is justified by the need to integrate an automatic feedback
system for players and therapists into the video game. This enables autonomous gaming
and the potential correction of interventions after receiving such feedback.

In this study, we also used three established feature selection methods in order to
compare the classifier performance with our proposed method. The number of features
selected is set to the same number obtained with the proposed method. Firstly, we em-
ployed information gain with respect to the class for ranking the features and selected the
features with higher scores. Additionally, we utilized forward feature selection (FFS) with
correlation-based feature subset selection [34] to identify the most relevant features. This
method assesses the worth of a subset of features that exhibits high correlation with the
class while maintaining low intercorrelation among the selected features. Furthermore,
we employed forward feature selection (FFS) to select the most relevant features using the
accuracy of a DT classifier as the evaluation metric.

2.5. Generation of Personal Reports

A report with information about the individual performance of each of the speakers
is generated. This report permits a comparison of the values of the relevant prosodic
features of the DS speakers with respect to the variability of the same features in typical
speakers. These individualized reports can be useful for identifying specific issues with a
speaker’s use of prosody and enable the adaptation of training activities to the speaker’s
prosodic skills. The reports are represented by radar charts drawn using the Python library
matplotlib [35]. These charts have been used in other works to compare the speech of
typical speakers and speakers with Parkinson’s [36]. These individualized reports can
be useful for identifying specific issues with a speaker’s use of prosody. They enable the
adaptation of training activities to the speaker’s prosodic skills.

From each selected feature, two different intervals have been calculated: reference
interval, defined as the interval in which 95% of the values of a reference population
(TD) fall, and the confidence interval (95%), which is a range of plausible values for the
population mean. The reference intervals were calculated using the refLimits function
(using the Cook’s outlier detection method) from R referenceIntervals library [37] and
the confidence intervals were computed using the Python library scipy [38]. These charts
show the reference and the confidence intervals computed with all the recordings of TD
speakers and the confidence interval of each speaker with DS for each of the selected
features and type of evaluation. The minimum and maximum values of all the intervals
were calculated to define the scale of the charts, adding a 0.1 margin to the lower limit to
facilitate the visualization.
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3. Results

Table 2 shows the 95% confidence intervals of the mean values for the selected features,
categorized by groups. Out of the ninety-two input features analyzed, only seven features
meet the established criteria using the offline evaluation data. In previous studies, using
different criteria, 21 features were selected in [24] and 27 features were selected in [9].

Table 2. List of automatically chosen frequency, energy, and temporal features. All of these features
exhibit statistically significant differences (as determined by the Mann–Whitney test with a p-value
less than 0.01) when comparing correct and incorrect productions of people with Down syndrome.
Moreover, in the selected features, the difference between the mean of productions of TD speakers
and the mean of right productions is lower than the difference between the mean of productions of
TD speakers and the mean of wrong productions. The interpretation of these features is detailed
in [9]. Within the cells, we display the 95% confidence interval of the mean value, with the units
specified in [29].

Typical DS Right DS Wrong
Speakers Productions Productions

F0 domain

f1 jitterLocal_sma3nz_stddevNorm (1.15, 1.18) (1.32, 1.43) (1.52, 1.66)

Energy domain

e1 loudness_sma3_percentile20.0 (0.85, 0.89) (0.71, 0.78) (0.63, 0.71)

Temporal domain

d1 loudnessPeaksPerSec (5.74, 5.84) (4.10, 4.32) (3.77, 4.06)
d2 StddevVoicedSegmentLengthSec (0.18, 0.19) (0.18, 0.23) (0.25, 0.33)
d3 silencePercentage (0.11, 0.13) (0.08, 0.11) (0.21, 0.27)
d4 silencesPerSecond (0.37, 0.41) (0.27, 0.35) (0.52, 0.63)
d5 silencesMean (0.20, 0.22) (0.13, 0.18) (0.31, 0.41)

Regarding the selected features, jitterLocal_sma3nz_stddevNorm represents the coef-
ficient of variation of deviations in consecutive F0 period lengths. In the energy domain,
loudness_sma3_percentile20.0 indicates the 20th percentile estimate of perceived signal
intensity from an auditory spectrum. Finally, in the temporal domain, loudnessPeaksPerSec
refers to the number of loudness peaks per second, StddevVoicedSegmentLengthSec repre-
sents the standard deviation of continuously voiced regions, silencePercentage indicates
the duration percentage of unvoiced regions, silencesPerSecond represents the number of
silences per second, and silencesMean denotes the mean length of unvoiced regions.

The confidence interval values in Table 2 reveal that a less stable F0 contour (higher
f1 feature) is associated with an abnormal utterance pronunciation at a perceptual level.
A weaker intensity (lower e1 feature) is penalized more. Utterances belonging to wrong
groups exhibit slower speech (lower d1 feature), more speed changes (higher d2 feature),
increased frequency of inner pauses (higher d3 and d4 features), and longer pauses (higher
d5 feature). Furthermore, Table 2 allows a comparison of feature values between typical
and DS speakers. It is relevant to note that there is a separation in the intervals between
typical and right productions for all features, except for d2, where the confidence intervals
overlap between right and typical utterances.

The proposed feature selection procedure successfully pinpointed the seven most infor-
mative variables out of the ninety-two analyzed ones, enabling the prediction of prosodic
quality with satisfactory outcomes. Three other established feature selection methods have
also been used for comparison. As shown in Table 3, the feature set obtained with the pro-
posed method, comprising seven features, yields superior classification accuracy compared to
using all ninety-two features across the three examined classification methods. This indicates
that these seven features encapsulate essential aspects for effectively classifying samples. Com-
pared to other feature sets of equal size (seven features) acquired through conventional feature
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selection methods like information gain, correlation-based FFS, or DT classifier FFS techniques,
the outcomes are similar. Although the features extracted using the proposed method yield
slightly lower accuracy in the case of DT and SVM, they demonstrate higher accuracy in
the case of MLP compared to feature sets obtained through traditional methods. Regarding
the F1 score, the optimal result is achieved with our proposed feature selection method and
an MLP classifier. As a result, we believe that employing these features, carefully chosen to
balance the discriminative capabilities between typical users and users with Down syndrome,
while also considering the ability to differentiate between correct and incorrect pronunciation
among users with Down syndrome, achieves this dual objective without substantial loss in
representation capacity for classification tasks, compared to other techniques that exclusively
consider the data of users with Down syndrome.

Table 3. Results of prosodic quality classification using different sets of features and classifiers. The
accuracy (Acc) and F1 score (F1) are reported for decision trees (DT), support vector machines (SVM),
and multilayer perceptron (MLP). The number of features in each set is shown in brackets.

DT SVM MLP

Acc F1 Acc F1 Acc F1

All Features (92) 63.5% 0.628 67.3% 0.617 62.8% 0.609
Proposed Method (7) 64.6% 0.603 68.9% 0.650 69.4% 0.681
Information Gain (7) 69.1% 0.653 71.6% 0.661 68.3% 0.650
Correlation FFS (7) 69.3% 0.653 70.9% 0.648 68.8% 0.665
Classifier DT FFS (7) 67.5% 0.662 67.5% 0.625 66.3% 0.641

Figure 2 presents the report individualized by speaker (the radar chart) of the potential
anomalous use of the selected prosodic features. The radar charts present reference and
confidence intervals of the TD speakers. The polygons in blue represent the upper and lower
limits of the reference intervals and the black polygons correspond to the confidence intervals.
The charts also present the confidence interval of the five speakers with DS for each type
of evaluation (right or wrong). These confidence intervals are represented by polygons in
red. When the red polygon coincides with the black one, it means that the features of the
DS speaker are in the same range of the TD speakers. The figure shows that the differences
between right DS recordings and recordings of TD speakers are lower than the differences
between wrong recordings in speakers with DS and TD speakers.

Speaker 022 has higher values in f1 feature, lower values in e1 feature, and similar values
in all temporal features, except in d1, than TD speakers when recordings are evaluated as
right. When recordings are evaluated as wrong, this speaker presents higher values in all
features except e1 and d3, with more variability than TD speakers. In this speaker, the number
of inner pauses and their length (d3, d4, and d5 features) and the frequency variation (f1) seem
to be the most informative features to evaluate their recordings as right or wrong. Speaker
023 has similar values in all features, except f1, d1, and d2, to TD speakers when recordings
are evaluated as right. When recordings are evaluated as wrong, this speaker presents higher
values in all features, except in d1 and d5 features, than TD speakers. The wrong recordings
of speaker 023 show high variability of f0 contour (f1), more speed changes (d2), and more
inner pauses (d3 and d4) than the right recordings.

Speaker 024 presents lower values in d1, d3, d4, and d5 when recordings are evaluated
as right. This speaker has higher variability in all features, except e1 and d1, than TD speakers
in wrong recordings. This speaker has higher variability in all features in wrong recordings
than in right recordings. Speaker 025 has similar values in all features, except d1 and d2, to
TD speakers in right recordings and higher values in all features, except d1 and e1, than TD
speakers in wrong recordings. The number of inner pauses and the pauses’ length are higher
in wrong recordings than in right recordings.
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Figure 2. Radar charts of the reference (RI) and confidence (CI) intervals of the TD speakers and
confidence interval of the five speakers with DS for each type of evaluation (right or wrong). The poly-
gons in blue represent the upper and lower limits of the reference intervals, the polygons in black
correspond to the confidence intervals of the features extracted from the audio recordings of TD
speakers, and the polygon in red corresponds to values of the confidence intervals obtained from the
speaker with DS.
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Finally, speaker 026 has higher values in e1 and f1 than TD speakers in right recordings
and higher values in f1, d2, d3, d4, and d5 features than TD speakers in wrong recordings.
As well as speakers 022 and 024, the number of inner pauses and the pauses’ length are
higher in wrong recordings than in right recordings.

4. Discussion

The temporal domain’s acoustic features appear to be more informative in assessing
oral turns regardless of the speaker. Out of the seven selected features listed in Table 2,
four variables specifically pertain to temporal aspects. This outcome is promising because
computing such features, unlike those in the F0 or spectral domain, demonstrates greater
resilience against adverse conditions that may arise with users affected by DS. Generally,
pitch detection algorithms encounter more challenges when dealing with pathological
voices compared to typical voices [39]. Moreover, features related to the temporal domain
can be readily associated with disfluent speech, such as stuttering or cluttering, which,
while not universal, are common issues among this population [40–42].

The presentation of individual reports about oral production proficiency of the speak-
ers has proven to be necessary to be accurate in the judgments concerning the particular
deficits of the speakers. We have shown in Figure 2 that presenting the personal results
permits us to make a diagnosis that takes into account the important inter-speaker differ-
ences. Presenting results that take into account the different prosodic features is especially
important in this context, as the subjective evaluation could be dependent on many aspects.

The presented reports permit us to shed light on the particular features that could most
influence therapists’ decisions when they score the quality of DS utterances. We already
highlighted in previous works the high variability among DS individuals [24]. The five
speakers exhibit different patterns with clear differences among them; the shapes of the red
areas in the graphics are different among them and contrast significantly with the one of the
typical speakers. As expected, the graphics corresponding to utterances labeled as wrong
are more distant to the mean TD pattern and closer to the borders of the reference interval.

All the speakers have lower values of the feature d1 (loudnessPeaksPerSec) than TD
speakers, related with the speed of speech. They are clearly slower when compared to
the typical values, close to the limit of the reference interval in all the cases except 024.
Speakers 022 and 024 show lower values for the feature loudness_sma3_percentile20.0 (e1).
We already pointed out that low speed and abnormal control of loudness are characteristic
clues of these types of speakers, probably due to muscular hypotonia [9].

Abnormal higher values for jitter (f1) are observed in the cases of speakers 022 and 023
and in a lower degree in the case of 026. The fact that the differences are higher in the cases
of utterances labeled as wrong by the therapist seems to indicate that these speakers exhibit
a particular problem with the control of this feature. As the jitter has to do with changes
in the dynamics of the F0 contour, these speakers could be evidencing an unsatisfactory
control of pitch.

The graphs allow us to find a problematic use of speech rhythm in the case of speaker
023. The StddevVoicedSegmentLengthSec feature (d2) varies much more than typically.
This speaker shows a problem of cluttered speech with unstable duration of the segments,
providing a higher standard deviation of voiced segments lengths than in a typical voice.
This behavior is also observed in speakers 025 and 026 but to a lesser degree.

The two speakers that were expected to have the worst results are 025 and 026 due to
their lower CA and VA (see Table 1). Apart from the extreme values of d1 that has been
already mentioned (they speak extremely slow), speaker 026 has the highest values for d3,
d4, and d5 features, evidencing that this speaker interrupts himself very frequently, more
when the utterances are labeled as wrong. In the case of speaker 025, wrong utterances are
marked when there are more pauses as well (higher d5, d4, d3, and d2 values). Additionally
the significant lower values for these features in the case of right utterances, in conjunction
with the low control of the peaks of energy and high variability of voiced segments’ length,
evidence a pattern of abnormal articulation.
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The information provided by prosodic features about specific individual speech
anomalies could serve to select personalized training activities. For example, with a
glance at the results in Figure 2, a therapist could decide to assign exercises related with the
intonation to speaker 023. Although, in this study, we have focused on five speakers with
Down syndrome, this type of analysis could be generalized to other populations because
the recordings used as reference belong to individuals without any speech-related issues,
and the extracted characteristics do not depend on a specific speaker profile. The use of the
video game for recording new speech samples and the recording environment could be
thought of as a restricted profile, but in an alternative one, the fundamental idea of using
recordings of typical speakers as a reference for evaluating the quality of utterances with
special characteristics remains.

As future work, we intend to conduct a comprehensive analysis of the interaction
between features to identify dependencies within the features of the dataset. Also proposed
as future work is the exploration of new features or combinations of existing ones that may
be associated with specific activities or types of activities. This endeavor aims to enhance
the results while also compiling a larger corpus to enable the testing of more sophisticated
models or alternative machine learning techniques. The task at hand is challenging due
to the diverse range of activities offered by the video game. In the future, we also intend
to utilize the utterances from the corpus to construct an unsupervised classification of
activities. This classification will consider the various acoustic prosodic features alongside
human judgments of quality.

5. Conclusions

The paper presents a feature selection procedure that utilizes human-based evalua-
tions and empirical observations to differentiate between utterances of individuals with
Down syndrome and those with typical development. The human-based evaluations were
conducted by a prosody expert, considering various aspects of prosody quality such as into-
nation, stress, accent, or organization into prosodic groups. Perceptual evaluation remains
a significant challenge, but we have used it solely as a reference for quality. We are currently
working on increasing the number of evaluators to enhance the evaluation process.

Acknowledging the limitations of the right/wrong evaluation, the results obtained
can still provide valuable information to therapists about the prosodic quality of record-
ings from individuals with Down syndrome, using only seven prosodic features without
compromising much on classification power. This procedure identifies the most significant
features in each domain: temporal, frequency, and energy-related. The reduced number of
features allows the creation of individual reports for each speaker, facilitating the identi-
fication of specific issues. The goal is to assist therapists in designing training therapies
tailored to each user’s particular problems.

The study’s limitation lies in the restricted number of speakers used. However,
collecting a voice corpus poses challenges, particularly when targeting populations with
intellectual disabilities. Therefore, as part of future work, we consider it crucial to continue
expanding the voice corpus by incorporating a more diverse range of users and recordings
to achieve better generalization of results.

Author Contributions: Conceptualization, M.C.-A., D.E.-M., V.C.-P. and C.G.-F.; methodology, M.C.-A.,
D.E.-M., V.C.-P. and C.G.-F.; software, M.C.-A. and D.E.-M.; validation, D.E.-M., V.C.-P. and C.G.-F.;
formal analysis, D.E.-M.; investigation, M.C.-A. and C.G.-F.; resources, M.C.-A., D.E.-M., V.C.-P. and
C.G.-F.; data curation, M.C.-A.; writing—original draft preparation, M.C.-A.; writing—review and
editing, M.C.-A., D.E.-M., V.C.-P. and C.G.-F.; visualization, M.C.-A.; supervision, D.E.-M.; project
administration, V.C.-P. and C.G.-F.; funding acquisition, V.C.-P. and C.G.-F. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was carried out in the Project PID2021-126315OB-I00 that was supported by
MCIN/AEI/10.13039/501100011033/FEDER,EU.



Appl. Sci. 2024, 14, 293 12 of 13

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethics Committee of the University of Valladolid
(protocol code PI 20-1639 NO HCUV approved on 11 June 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the collected data consists of
recordings from individuals with intellectual disabilities, and voice is a biometric data that can be
used to identify a person, which goes against data protection laws.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DS Down syndrome
F0 Fundamental frequency
TD Typical development
DT Decision tree
MLP Multilayer perceptron
SVM Support vector machine

References
1. Roach, P. English Phonetics and Phonology Fourth Edition: A Practical Course; Cambridge University Press: Cambridge, UK, 2010.
2. Batliner, A.; Möbius, B. Prosody in Automatic Speech Processing. In The Oxford Handbook of Language Prosody; Oxford University

Press: Oxford, UK, 2020. [CrossRef]
3. Wells, B.; Peppé, S.; Vance, M. Linguistic assessment of prosody. In Linguistics in Clinical Practice; Taylor & Francis: London, UK,

1995; pp. 234–265.
4. Chapman, R.S.; Hesketh, L. Language, cognition, and short-term memory in individuals with Down syndrome. Down Syndr. Res.

Pract. 2001, 7, 1–7. [CrossRef] [PubMed]
5. Kent, R.D.; Vorperian, H.K. Speech impairment in Down syndrome: A review. J. Speech Lang. Hear. Res. 2013, 56, 178–210.

[CrossRef] [PubMed]
6. Stojanovik, V. Prosodic deficits in children with Down syndrome. J. Neurolinguist. 2011, 24, 145–155. [CrossRef]
7. Heselwood, B.; Bray, M.; Crookston, I. Juncture, rhythm and planning in the speech of an adult with Down’s syndrome. Clin.

Linguist. Phon. 1995, 9, 121–137. [CrossRef]
8. O’Leary, D.; Lee, A.; O’Toole, C.; Gibbon, F. Perceptual and acoustic evaluation of speech production in Down syndrome: A case

series. Clin. Linguist. Phon. 2020, 34, 72–91. [CrossRef]
9. Corrales-Astorgano, M.; Escudero-Mancebo, D.; González-Ferreras, C. Acoustic characterization and perceptual analysis of the

relative importance of prosody in speech of people with Down syndrome. Speech Commun. 2018, 99, 90–100. [CrossRef]
10. Cano, A.R.; García-Tejedor, Á.J.; Alonso-Fernández, C.; Fernández-Manjón, B. Game Analytics Evidence-Based Evaluation of a

Learning Game for Intellectual Disabled Users. IEEE Access 2019, 7, 123820–123829. [CrossRef]
11. García, L.E.; Mejía, R.J.; Salazar, A.; Gómez, C.E. Un videojuego para estimular habilidades matemáticas en personas con

síndrome de Down. Rev. Espac. 2019, 40, 1–15.
12. Prena, K.; Sherry, J.L. Parental perspectives on video game genre preferences and motivations of children with Down syndrome.

J. Enabling Technol. 2018, 12, 1–9. [CrossRef]
13. Del Rio Guerra, M.S.; Martin-Gutierrez, J.; Acevedo, R.; Salinas, S. Hand Gestures in Virtual and Augmented 3D Environments

for Down Syndrome Users. Appl. Sci. 2019, 9, 2641. [CrossRef]
14. Boone, D.R.; McFarlane, S.C.; Von Berg, S.L.; Zraick, R.I. The Voice and Voice Therapy; Pearson/Allyn & Bacon: Boston, MA,

USA, 2005.
15. Rodríguez, W.R.; Saz, O.; Lleida, E. A prelingual tool for the education of altered voices. Speech Commun. 2012, 54, 583–600.

[CrossRef]
16. González-Ferreras, C.; Escudero-Mancebo, D.; Corrales-Astorgano, M.; Aguilar-Cuevas, L.; Flores-Lucas, V. Engaging adolescents

with Down syndrome in an educational video game. Int. J. Hum.-Interact. 2017, 33, 693–712. [CrossRef]
17. Martínez, M.H.; Duran, X.P.; Navarro, J.N. Attention deficit disorder with or without hyperactivity or impulsivity in children

with Down’s syndrome. Int. Med. Rev. Down Syndr. 2011, 15, 18–22. [CrossRef]
18. Chapman, R.S. Language development in children and adolescents with Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev.

1997, 3, 307–312. [CrossRef]

http://doi.org/10.1093/oxfordhb/9780198832232.013.42
http://dx.doi.org/10.3104/reviews.108
http://www.ncbi.nlm.nih.gov/pubmed/11706807
http://dx.doi.org/10.1044/1092-4388(2012/12-0148)
http://www.ncbi.nlm.nih.gov/pubmed/23275397
http://dx.doi.org/10.1016/j.jneuroling.2010.01.004
http://dx.doi.org/10.3109/02699209508985328
http://dx.doi.org/10.1080/02699206.2019.1611925
http://dx.doi.org/10.1016/j.specom.2018.03.006
http://dx.doi.org/10.1109/ACCESS.2019.2938365
http://dx.doi.org/10.1108/JET-08-2017-0034
http://dx.doi.org/10.3390/app9132641
http://dx.doi.org/10.1016/j.specom.2011.05.006
http://dx.doi.org/10.1080/10447318.2017.1278895
http://dx.doi.org/10.1016/S2171-9748(11)70006-X
http://dx.doi.org/10.1002/(SICI)1098-2779(1997)3:4<307::AID-MRDD5>3.0.CO;2-K


Appl. Sci. 2024, 14, 293 13 of 13

19. Escudero-Mancebo, D.; Corrales-Astorgano, M.; Cardeñoso-Payo, V.; Aguilar, L.; González-Ferreras, C.; Martínez-Castilla, P.;
Flores-Lucas, V. PRAUTOCAL corpus: A corpus for the study of Down syndrome prosodic aspects. Lang. Resour. Eval. 2021, 56,
191–224. [CrossRef]

20. Le, D.; Provost, E.M. Modeling pronunciation, rhythm, and intonation for automatic assessment of speech quality in aphasia
rehabilitation. In Proceedings of the INTERSPEECH, Singapore, 14–18 September 2014.

21. Tu, M.; Berisha, V.; Liss, J. Interpretable Objective Assessment of Dysarthric Speech Based on Deep Neural Networks. In
Proceedings of the INTERSPEECH, Stockholm, Sweden, 20–24 August 2017; pp. 1849–1853.

22. Li, M.; Tang, D.; Zeng, J.; Zhou, T.; Zhu, H.; Chen, B.; Zou, X. An automated assessment framework for atypical prosody and
stereotyped idiosyncratic phrases related to autism spectrum disorder. Comput. Speech Lang. 2019, 56, 80–94. [CrossRef]

23. Kent, R.D.; Eichhorn, J.; Wilson, E.M.; Suk, Y.; Bolt, D.M.; Vorperian, H.K. Auditory-perceptual features of speech in children and
adults with Down syndrome: A speech profile analysis. J. Speech Lang. Hear. Res. 2021, 64, 1157–1175. [CrossRef]

24. Corrales-Astorgano, M.; Martínez-Castilla, P.; Escudero-Mancebo, D.; Aguilar, L.; González-Ferreras, C.; Cardeñoso-Payo, V.
Automatic Assessment of Prosodic Quality in Down Syndrome: Analysis of the Impact of Speaker Heterogeneity. Appl. Sci. 2019,
9, 1440. [CrossRef]

25. Martínez-Castilla, P.; Peppé, S. Developing a test of prosodic ability for speakers of Iberian Spanish. Speech Commun. 2008,
50, 900–915. [CrossRef]

26. Oates, J. Auditory-perceptual evaluation of disordered voice quality: Pros, cons and future directions. Folia Phoniatr. Logop. 2009,
61, 49–56. [CrossRef]

27. Kreiman, J.; Gerratt, B.R.; Ito, M. When and why listeners disagree in voice quality assessment tasks. J. Acoust. Soc. Am. 2007,
122, 2354–2364. [CrossRef] [PubMed]

28. Yoon, T.J.; Chavarria, S.; Cole, J.; Hasegawa-Johnson, M. Intertranscriber reliability of prosodic labeling on telephone conversation
using toBI. In Proceedings of the Interspeech 2004, Jeju Island, Republic of Korea, 4–8 October 2004; pp. 2729–2732. [CrossRef]

29. Eyben, F.; Weninger, F.; Gross, F.; Schuller, B. Recent developments in opensmile, the munich open-source multimedia feature
extractor. In Proceedings of the 21st ACM International Conference on Multimedia, Barcelona, Spain, 21–25 October 2013;
pp. 835–838.

30. Eyben, F.; Scherer, K.R.; Schuller, B.W.; Sundberg, J.; André, E.; Busso, C.; Devillers, L.Y.; Epps, J.; Laukka, P.; Narayanan, S.S.;
et al. The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE Trans. Affect.
Comput. 2016, 7, 190–202. [CrossRef]

31. Ekberg, M.; Stavrinos, G.; Andin, J.; Stenfelt, S.; Dahlström, Ö. Acoustic Features Distinguishing Emotions in Swedish Speech.
J. Voice 2023. [CrossRef] [PubMed]

32. Boersma, P. Praat: Doing Phonetics by Computer. Amsterdam, The Netherlands, 2006. Available online: http://www.praat.org/
(accessed on 15 September 2023).

33. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

34. Hall, M.A. Correlation-Based Feature Subset Selection for Machine Learning. Ph.D. Thesis, University of Waikato, Hamilton,
New Zealand, 1998.

35. Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
36. Orozco-Arroyave, J.R.; Vásquez-Correa, J.C.; Vargas-Bonilla, J.F.; Arora, R.; Dehak, N.; Nidadavolu, P.; Christensen, H.; Rudzicz,

F.; Yancheva, M.; Chinaei, H.; et al. NeuroSpeech: An open-source software for Parkinson’s speech analysis. Digit. Signal Process.
2018, 77, 207–221. [CrossRef]

37. Finnegan, D. referenceIntervals: Reference Intervals, 2020. R package version 1.2.0. Available online: https://CRAN.R-project.org/
package=referenceIntervals (accessed on 21 September 2023).

38. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser,
W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272.
[CrossRef]

39. Jang, S.J.; Choi, S.H.; Kim, H.M.; Choi, H.S.; Yoon, Y.R. Evaluation of performance of several established pitch detection algorithms
in pathological voices. In Proceedings of the 2007 29th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Lyon, France, 22–26 August 2007; pp. 620–623.

40. Van Borsel, J.; Vandermeulen, A. Cluttering in Down syndrome. Folia Phoniatr. Logop. 2008, 60, 312–317. [CrossRef]
41. Devenny, D.; Silverman, W. Speech dysfluency and manual specialization in Down’s syndrome. J. Intellect. Disabil. Res. 1990,

34, 253–260. [CrossRef]
42. Eggers, K.; Van Eerdenbrugh, S. Speech disfluencies in children with Down Syndrome. J. Commun. Disord. 2017, 71, 72–84.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10579-021-09542-8
http://dx.doi.org/10.1016/j.csl.2018.11.002
http://dx.doi.org/10.1044/2021_JSLHR-20-00617
http://dx.doi.org/10.3390/app9071440
http://dx.doi.org/10.1016/j.specom.2008.03.002
http://dx.doi.org/10.1159/000200768
http://dx.doi.org/10.1121/1.2770547
http://www.ncbi.nlm.nih.gov/pubmed/17902870
http://dx.doi.org/10.21437/Interspeech.2004-659
http://dx.doi.org/10.1109/TAFFC.2015.2457417
http://dx.doi.org/10.1016/j.jvoice.2023.03.010
http://www.ncbi.nlm.nih.gov/pubmed/37045739
http://www.praat.org/
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1016/j.dsp.2017.07.004
https://CRAN.R-project.org/package=referenceIntervals
https://CRAN.R-project.org/package=referenceIntervals
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1159/000170081
http://dx.doi.org/10.1111/j.1365-2788.1990.tb01536.x
http://dx.doi.org/10.1016/j.jcomdis.2017.11.001

	Introduction
	Materials and Methods
	Corpus Recording
	Human-Based Quality Evaluation
	Processing and Selection of Prosodic Features
	Automatic Classification
	Generation of Personal Reports

	Results
	Discussion
	Conclusions
	References

