• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/11618

    Título
    Robust estimation for mixtures of Gaussian factor analyzers, based on trimming and constraints
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Gordaliza Ramos, AlfonsoAutoridad UVA Orcid
    Greselin, Francesca
    Salvatore, Ingrassia
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2015
    Editorial
    Universidad de Valladolid. Facultad de Medicina
    Descripción
    Producción Científica
    Documento Fuente
    Arxiv, Marzo 2015, vol. 1. p.1-30
    Resumo
    Mixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous population, offering - at the same time - dimension reduction and model-based clustering. Unfortunately, the high prevalence of spurious solutions and the disturbing effects of outlying observations, along maximum likelihood estimation, open serious issues. In this paper we consider restrictions for the component covariances, to avoid spurious solutions, and trimming, to provide robustness against violations of normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology.
    Materias (normalizadas)
    Análisis multivariante
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/11618
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Agustín Mayo 2.pdf
    Tamaño:
    728.9Kb
    Formato:
    Adobe PDF
    Descripción:
    PD-251
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10