• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/16295

    Título
    Pattern recognition applied to airflow recordings to help in sleep Apnea-Hypopnea Syndrome diagnosis
    Autor
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Director o Tutor
    Hornero Sánchez, RobertoAutoridad UVA
    Álvarez González, DanielAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2015
    Resumen
    El Síndrome de la Apnea Hipopnea del Sueño (SAHS) es un trastorno caracterizado por pausas respiratorias durante el sueño. Se considera un grave problema de salud que afecta muy negativamente a la calidad de vida y está relacionada con las principales causas de mortalidad, como los accidentes cardiovasculares y cerebrovasculares. A pesar de su elevada prevalencia (2–7%) se considera una enfermedad infradiagnosticada. El diagnóstico estándar se realiza mediante polisomnografía (PSG) nocturna, que es un método complejo y de alto coste. Estas limitaciones han originado largas listas de espera. Esta Tesis Doctoral tiene como principal objetivo simplificar la metodología de diagnóstico del SAHS . Para ello, se propone el análisis exhaustivo de la señal de flujo aéreo monocanal. La metodología propuesta se basa en tres fases (i) extracción de características, (ii) selección de características, y (iii) procesado de la señal mediante métodos de reconocimiento de patrones. Los resultados obtenidos muestran un alto rendimiento diagnóstico de la propuesta tanto en la detección como en la determinación del grado de severidad del SAHS. Por ello, la principal conclusión de la Tesis Doctoral es que los métodos de reconocimiento automático de patrones aplicados sobre la señal de flujo aéreo monocanal resultan de utilidad para reducir la complejidad del proceso de diagnóstico del SAHS.
    Materias (normalizadas)
    Apnea del sueño
    Imágenes, Tratamiento de las
    Departamento
    Departamento de Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    DOI
    10.35376/10324/16295
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/16295
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2367]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Tesis848-160226.pdf
    Tamaño:
    5.591Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10