• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/18091

    Título
    Robust Principal Component Analysis Based On Trimming Around Affine Subspaces
    Autor
    Croux, Christophe
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Gordaliza Ramos, AlfonsoAutoridad UVA Orcid
    Ruwet, Christel
    San Martín Fernández, RobertoAutoridad UVA Orcid
    Año del Documento
    2016
    Zusammenfassung
    Principal Component Analysis (PCA) is a widely used technique for reducing dimensionality of multivariate data. The principal component subspace is defined as the affine subspace of a given dimension d giving the best fit to the data. However, PCA suffers from a well-known lack of robustness. As a robust alternative, one can resort to an impartial trimming based approach. Here one searches for the best subsample containing a proportion 1 − α of the observations, with 0 < α < 1, and the best d-dimensional affine subspace fitting this subsample, yielding the trimmed principal component subspace. A population version will be given and existence of a solution to both the sample and population problem will be proven. Moreover, under mild conditions, the solutions of the sample problem are consistent toward the solutions of the population problem. The robustness of the method is studied by proving quantitative robustness, computing the breakdown point, and deriving the influence functions. Furthermore, asymptotic efficiencies at the normal model are derived, and finite sample efficiencies of the estimators are studied by means of a simulation study
    Materias (normalizadas)
    Estadística
    Departamento
    Estadística e IO
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/18091
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc) [9]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    RobustPCA.pdf
    Tamaño:
    283.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10