• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc)
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/18092

    Título
    A Fuzzy Approach to Robust Clusterwise Regression
    Autor
    Dotto, Francesco
    Farcomeni, Alessio
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2016
    Resumo
    new robust fuzzy linear clustering method is proposed. We estimate coe cients of a linear regression model in each unknown cluster. Our method aims to achieve robustness by trimming a xed proportion of observations. Assignments to clusters are fuzzy: observations contribute to estimates in more than one single cluster. We describe general criteria for tuning the method. The proposed method seems to be robust with respect to di erent types of contamination.
    Materias (normalizadas)
    Estadística
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/18092
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Otros Documentos (Monografías, Informes, Memorias, Documentos de Trabajo, etc) [9]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    robust_fuzzy_regression_clustering.pdf
    Tamaño:
    1.080Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10