Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21061
Título
Dynamic Facial Emotion Recognition Oriented to HCI Applications
Año del Documento
2015
Editorial
Oxford University Press
Descripción
Producción Científica
Documento Fuente
Samuel Marcos Pablos, Jaime Gómez García-Bermejo, Eduardo Zalama Casanova, Joaquín López. Dynamic Facial Emotion Recognition Oriented to HCI Applications. Interacting with Computers. 2015, vol. 27, p. 99-119
Resumen
As part of a multimodal animated interface previously presented in [38], in this paper we describe a method for dynamic recognition of displayed facial emotions on low resolution streaming images. First, we address the detection of Action Units of the Facial Action Coding System upon Active Shape Models and Gabor filters. Normalized outputs of the Action Unit recognition step are then used as inputs for a neural network which is based on real cognitive systems architecture, and consists on a habituation network plus a competitive network. Both the competitive and the habituation layer use differential equations thus taking into account the dynamic information of facial expressions through time. Experimental results carried out on live video sequences and on the Cohn-Kanade face database show that the proposed method provides high recognition hit rates.
Materias (normalizadas)
Robots
Realidad virtual
ISSN
0953-5438
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)
Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)
Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R)
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International