Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21412
Título
The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers.
Autor
Año del Documento
2016
Editorial
ELSEVIER
Descripción
Producción Científica
Documento Fuente
Computational Statistics and Data Analysis, vol. 99, pp. 131-147.
Résumé
Mixtures of Gaussian factors are powerful tools for modeling an unobserved heterogeneous
population, offering – at the same time – dimension reduction and model-based clustering. The high prevalence of spurious solutions and the disturbing effects of outlying observations in maximum likelihood estimation may cause biased or misleading inferences. Restrictions for the component covariances are considered in order to avoid spurious solutions, and trimming is also adopted, to provide robustness against violations of normality assumptions of the underlying latent factors. A detailed AECM algorithm for this new approach is presented. Simulation results and an application to the AIS dataset show the aim and effectiveness of the proposed methodology.
Materias (normalizadas)
Constrained estimation, Factor analyzers modeling, Mixture models, Model-based clustering, Robust estimation
ISSN
ISSN: 0167-9473
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad and FEDER, grant MTM2014-56235-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León, grant VA212U13, by grant FAR 2015 from the University of Milano-Bicocca and by grant FIR 2014 from the University of Catania.
Version del Editor
Propietario de los Derechos
Springer
Idioma
eng
Derechos
restrictedAccess
Aparece en las colecciones
Fichier(s) constituant ce document