• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21496

    Título
    Identification of asymmetric conditional heteroscedasticity in the presence of outliers
    Autor
    Carnero, María Ángeles
    Pérez Espartero, AnaAutoridad UVA Orcid
    Ruiz, Esther
    Año del Documento
    2016
    Editorial
    Springer Open
    Descripción
    Producción Científica
    Documento Fuente
    SERIEs: Journal of the Spanish Economic Association, 2016, vol. 7, Issue 1, p. 179–201
    Resumo
    The identification of asymmetric conditional heteroscedasticity is often based on sample cross-correlations between past and squared observations. In this paper we analyse the effects of outliers on these cross-correlations and, consequently, on the identification of asymmetric volatilities. We showthat, as expected, one isolated big outlier biases the sample cross-correlations towards zero and hence could hide true leverage effect. Unlike, the presence of two or more big consecutive outliers could lead to detecting spurious asymmetries or asymmetries of the wrong sign. We also address the problem of robust estimation of the cross-correlations by extending some popular robust estimators of pairwise correlations and autocorrelations. Their finite sample resistance against outliers is compared through Monte Carlo experiments. Situations with isolated and patchy outliers of different sizes are examined. It is shown that a modified Ramsay-weighted estimator of the cross-correlations outperforms other estimators in identifying asymmetric conditionally heteroscedastic models. Finally, the results are illustrated with an empirical application.
    Materias (normalizadas)
    Estimación, teoría de la
    ISSN
    1869-4187
    Revisión por pares
    SI
    DOI
    10.1007/s13209-015-0131-4
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (ECO2012-32401)
    Ministerio de Economía, Industria y Competitividad (ECO2014-58434-P)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
    Generalitat Valenciana project PROMETEO/2013/037
    Version del Editor
    http://rd.springer.com
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21496
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP20 - Artículos de revista [181]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    SERIEs.pdf
    Tamaño:
    1.064Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10