• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21498

    Título
    Positional Voting Systems Generated by Cumulative Standings Functions
    Autor
    Llamazares Rodríguez, BonifacioAutoridad UVA Orcid
    Peña García, María TeresaAutoridad UVA Orcid
    Año del Documento
    2015
    Editorial
    Springer Verlag
    Descripción
    Producción Científica
    Documento Fuente
    Group Decision and Negotiation, 2015, Vol. 24, Issue 5, pp 777–801
    Abstract
    Positional voting systems are a class of voting systems where voters rank order the candidates from best to worst and a set of winners is selected using the positions of the candidates in the voters’ preference orders. Although scoring rules are the best known positional voting systems, this class includes other voting systems proposed in the literature as, for example, the Majoritarian Compromise or the q-Approval Fallback Bargaining. In this paper we show that some of these positional voting systems can be integrated in a model based on cumulative standings functions. The proposed model allows us to establish a general framework for the analysis of these voting systems, to extend to them some results in the literature for the particular case of the scoring rules, and also facilitates the study of the social choice properties considered in the paper: monotonicity, Pareto-optimality, immunity to the absolute winner paradox, Condorcet consistency, immunity to the absolute loser paradox and immunity to the Condorcet loser paradox.
    Materias (normalizadas)
    Voto - Matemáticas
    ISSN
    0926-2644
    Revisión por pares
    SI
    DOI
    10.1007/s10726-014-9412-8
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (ECO2011-24200)
    Ministerio de Economía, Industria y Competitividad (ECO2012-32178)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
    Version del Editor
    https://link.springer.com/article/10.1007/s10726-014-9412-8
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21498
    Derechos
    openAccess
    Collections
    • DEP20 - Artículos de revista [181]
    Show full item record
    Files in this item
    Nombre:
    2015GDN.pdf
    Tamaño:
    189.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10