• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Capítulos de monografías
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Capítulos de monografías
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21571

    Título
    Consensus-Based Agglomerative Hierarchical Clustering
    Autor
    García Lapresta, José LuisAutoridad UVA Orcid
    Pérez Román, DavidAutoridad UVA Orcid
    Año del Documento
    2017
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Fuzzy Sets, Rough Sets, Multisets and Clustering. eds. V. Torra, A. Dahlbom, Y. Narukawa. Springer, 2017 (Studies in Computational Intelligence 671)
    Résumé
    In this contribution, we consider that a set of agents assess a set of alternatives through numbers in the unit interval. In this setting, we introduce a measure that assigns a degree of consensus to each subset of agents with respect to every subset of alternatives. This consensus measure is defined as 1 minus the outcome generated by a symmetric aggregation function to the distances between the corresponding individual assessments. We establish some properties of the consensus measure, some of them depending on the used aggregation function. We also introduce an agglomerative hierarchical clustering procedure that is generated by similarity functions based on the previous consensus measures
    Materias (normalizadas)
    Matemáticas
    Operadores, Teoría de
    ISBN
    978-3-319-47557-8
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (ECO2012-32178)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA066U13)
    Version del Editor
    http://www.springer.com/us/book/9783319475561
    Propietario de los Derechos
    © 2017 Springer
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21571
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP20 - Capítulos de monografías [14]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Book-Miyamoto-Lapresta-2.pdf
    Tamaño:
    228.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10