• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21725

    Título
    Novel measure of the weigh distribution balance on the brain network: graph complexity applied to schizophrenia
    Autor
    Gómez Pilar, JavierAutoridad UVA Orcid
    Bachiller Matarranz, AlejandroAutoridad UVA
    Núñez Novo, PabloAutoridad UVA
    Poza Crespo, JesúsAutoridad UVA Orcid
    Gómez Peña, CarlosAutoridad UVA Orcid
    Lubeiro Juarez, AlbaAutoridad UVA Orcid
    Molina Rodríguez, VicenteAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    IEEE Conference Publications
    Descripción
    Producción Científica
    Documento Fuente
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2016, p. 700 - 703
    Resumo
    The aim of this study was to assess brain complexity dynamics in schizophrenia (SCH) patients during an auditory oddball task. For that task, we applied a novel graph measure based on the balance of the node weighs distribution. Previous studies applied complexity parameters that were strongly dependent on network topology. This fact could bias the results besides being necessary correction techniques as surrogating process. In the present study, we applied a novel graph complexity measure from the information theory: Shannon Graph Complexity (SGC). Complexity patterns form electroencephalographic recordings of 20 healthy controls and 20 SCH patients during an auditory oddball task were analyzed. Results showed a significantly more pronounced decrease of SGC for controls than for SCH patients during the cognitive task. These findings suggest an important change in the brain configuration towards more balanced networks, mainly in the connections related to long-range interactions. Since these changes are significantly more pronounced in controls, it implies a deficit in the neural network reorganization in SCH patients. In addition, SGC showed a suitable discrimination ability using a leave-one-out cross-validation: 0.725 accuracy and 0.752 area under receiver operating characteristics curve. The novel complexity measure proposed in this study demonstrated to be independent of network topology and, therefore, it complements traditional graph measures to characterize brain networks.
    Materias (normalizadas)
    Schizophrenia
    ISSN
    1557-170X
    Revisión por pares
    SI
    DOI
    10.1109/EMBC.2016.7590798
    Patrocinador
    Ministerio de Economía y Competitividad (TEC2014-53196-R)
    Junta de Castilla y León (VA059U13)
    Version del Editor
    http://ieeexplore.ieee.org/servlet/opac?punumber=1000269
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21725
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    GomezPilar_etal_EMBC_2016_post-review.pdf
    Tamaño:
    337.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10