• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21814

    Título
    Robustness and Outliers
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Gordaliza Ramos, AlfonsoAutoridad UVA Orcid
    Matrán Bea, CarlosAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Hennig, C.
    Año del Documento
    2015
    Editorial
    Chapman and Hall/CRC
    Descripción
    Producción Científica
    Documento Fuente
    Handbook of Cluster Analysis. Eds.: Christian Hennig, Marina Meila, Fionn Murtagh, Roberto Rocci. Chapman and Hall/CRC, 2015. p. 653-678 (Chapman & Hall/CRC Handbooks of Modern Statistical Methods)
    Résumé
    Unexpected deviations from assumed models as well as the presence of certain amounts of outlying data are common in most practical statistical applications. This fact could lead to undesirable solutions when applying non-robust statistical techniques. This is often the case in cluster analysis, too. The search for homogeneous groups with large heterogeneity between them can be spoiled due to the lack of robustness of standard clustering methods. For instance, the presence of (even few) outlying observations may result in heterogeneous clusters artificially joined together or in the detection of spurious clusters merely made up of outlying observations. In this chapter we will analyze the effects of different kinds of outlying data in cluster analysis and explore several alternative methodologies designed to avoid or minimize their undesirable effects.
    Materias (normalizadas)
    statistical applications
    ISBN
    9781466551886
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13)
    Version del Editor
    https://www.crcpress.com/
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21814
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Capítulos de monografías [7]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Robustness-and-Outliers-preprint.pdf
    Tamaño:
    590.8Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10