• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21840

    Título
    Fuzzy Clustering Throug Robust Factor Analyzers
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Greselin, Francesca
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    Springer International Publishing
    Descripción
    Producción Científica
    Documento Fuente
    Soft Methods for Data Science. Editors: Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Ángeles Gil, M., Grzegorzewski, P., Hryniewicz, O. Springer International Publishing, 2016, p. 229-235 ( Advances in Intelligent Systems and Computing, 456)
    Resumen
    In fuzzy clustering, data elements can belong to more than one cluster , and membership levels are associated with each element, to indicate the strength of the association between that data element and a particular cluster. Unfortunately, fuzzy clustering is not robust, while in real applications the data is contaminated by outliers and noise, and the assumed underlying Gaussian distributions could be unrealistic. Here we propose a robust fuzzy estimator for clustering through Factor Analyzers, by introducing the joint usage of trimming and of constrained estimation of noise matrices in the classic Maximum Likelihood approach.
    Materias (normalizadas)
    Statistics
    ISBN
    978-3-319-42971-7
    DOI
    10.1007/978-3-319-42972-4_29
    Version del Editor
    http://link.springer.com/chapter/10.1007/978-3-319-42972-4_29
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21840
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Capítulos de monografías [7]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    GarciaGreselinMayoSMPS2016SMPS2016.pdf
    Tamaño:
    130.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10