• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21842

    Título
    Robust Fuzzy Clustering via Trimming and Constraints
    Autor
    Dotto, Francesco
    Farcomeni, Alessio
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    Springer International Publishing
    Descripción
    Producción Científica
    Documento Fuente
    Soft Methods for Data Science. Editors: Maria Brigida Ferraro, Paolo Giordani , Barbara Vantaggi , Marek Gagolewski , María Ángeles Gil, Przemysław Grzegorzewski , Olgierd Hryniewicz , Springer International Publishing, 2016, p. 197-204 (Advances in Intelligent Systems and Computing, 456)
    Résumé
    A methodology for robust fuzzy clustering is proposed. This methodology can be widely applied in very different statistical problems given that it is based on probability likelihoods. Robustness is achieved by trimming a fixed proportion of “most outlying” observations which are indeed self-determined by the data set at hand. Constraints on the clusters’ scatters are also needed to get mathematically well-defined problems and to avoid the detection of non-interesting spurious clusters. The main lines for computationally feasible algorithms are provided and some simple guidelines about how to choose tuning parameters are briefly outlined. The proposed methodology is illustrated through two applications. The first one is aimed at heterogeneously clustering under multivariate normal assumptions and the second one migh be useful in fuzzy clusterwise linear regression problems.
    Materias (normalizadas)
    Statistics
    ISBN
    978-3-319-42972-4
    DOI
    10.1007/978-3-319-42972-4_25
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13)
    Version del Editor
    http://link.springer.com/chapter/10.1007/978-3-319-42972-4_25
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/21842
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Capítulos de monografías [7]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    SMPS2016_LAG.pdf
    Tamaño:
    657.2Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10