• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/21848

    Título
    Grouping Around Different Dimensional Affine Subspaces
    Autor
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    Gordaliza Ramos, AlfonsoAutoridad UVA Orcid
    Matrán Bea, CarlosAutoridad UVA Orcid
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2013
    Documento Fuente
    Statistical Models for Data Analysis 2013. Studies in Classification, Data Analysis, and Knowledge Organization 201, Edited by Paolo Giudici, Salvatore Ingrassia, Maurizio Vichi,
    Resumo
    Grouping around affine subspaces and other types of manifolds is receiving a lot of attention in the literature due to its interest in several fields of application. Allowing for different dimensions is needed in many applications. This work extends the TCLUST methodology to deal with the problem of grouping data around different dimensional linear subspaces in the presence of noise. Two ways of considering error terms in the orthogonal of the linear subspaces are considered.
    Materias (normalizadas)
    Estadística
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/21848
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Capítulos de monografías [7]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    cladag.pdf
    Tamaño:
    239.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10