Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22870
Título
The anisotropic oscillator on curved spaces: A new exactly solvable model
Año del Documento
2016
Documento Fuente
Ann. Phys. 373 (2016) 399-423.
Resumo
We present a new exactly solvable (classical and quantum) model that can be interpreted as the generalization to the two-dimensional sphere and to the hyperbolic space of the two-dimensional anisotropic oscillator with any pair of frequencies and . The new curved Hamiltonian depends on the curvature of the underlying space as a deformation/contraction parameter, and the Liouville integrability of relies on its separability in terms of geodesic parallel coordinates, which generalize the Cartesian coordinates of the plane. Moreover, the system is shown to be superintegrable for commensurate frequencies , thus mimicking the behaviour of the flat Euclidean case, which is always recovered in the limit. The additional constant of motion in the commensurate case is, as expected, of higher-order in the momenta and can be explicitly deduced by performing the classical factorization of the Hamiltonian. The known and anisotropic curved oscillators are recovered as particular cases of , meanwhile all the remaining curved oscillators define new superintegrable systems. Furthermore, the quantum Hamiltonian is fully constructed and studied by following a quantum factorization approach. In the case of commensurate frequencies, the Hamiltonian turns out to be quantum superintegrable and leads to a new exactly solvable quantum model. Its corresponding spectrum, that exhibits a maximal degeneracy, is explicitly given as an analytical deformation of the Euclidean eigenvalues in terms of both the curvature and the Planck constant
. In fact, such spectrum is obtained as a composition of two one-dimensional (either trigonometric or hyperbolic) Pösch–Teller set of eigenvalues.
Departamento
Física Teórica, Atómica y Óptica
Patrocinador
Ministerio de Economía, Industria y Competitividad (Projects MTM2013-43820-P and MTM2014-57129-C2-1-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. BU278U14 and VA057U16)
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. BU278U14 and VA057U16)
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item