• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22877

    Título
    Two-point one-dimensional δ-δ’ interactions: non-abelian addition law and decoupling limit
    Autor
    Gadella Urquiza, ManuelAutoridad UVA Orcid
    Mateos Guilarte, Juan
    Muñoz Castañeda, José MaríaAutoridad UVA
    Nieto Calzada, Luis MiguelAutoridad UVA Orcid
    Año del Documento
    2016
    Documento Fuente
    J. Phys. A: Math. Theor. 49 (2016) 015204.
    Abstract
    In this contribution to the study of one-dimensional point potentials, we prove that if we take the limit $q\to 0$ on a potential of the type ${v}_{0}\delta (y)+2{v}_{1}{\delta }^{\prime }(y)+{w}_{0}\delta (y-q)+2{w}_{1}{\delta }^{\prime }(y-q),$ we obtain a new point potential of the type ${u}_{0}\delta (y)+2{u}_{1}{\delta }^{\prime }(y),$ when u0 and u1 are related to v0, v1, w0 and w1 by a law with the structure of a group. This is the Borel subgroup of ${{SL}}_{2}({\mathbb{R}}).$ We also obtain the non-abelian addition law from the scattering data. The spectra of the Hamiltonian in the decoupling cases emerging in the study are also described in full. It is shown that for the ${v}_{1}=\pm 1,\;$ ${w}_{1}=\pm 1$ values of the ${\delta }^{\prime }$ couplings the singular Kurasov matrices become equivalent to Dirichlet at one side of the point interaction and Robin boundary conditions at the other side.
    Departamento
    Física Teórica, Atómica y Óptica
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project MTM2014-57129-C2-1-P)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. UIC 011)
    Version del Editor
    http://iopscience.iop.org/article/10.1088/1751-8113/49/1/015204
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22877
    Derechos
    openAccess
    Collections
    • FM - Artículos de revista [134]
    Show full item record
    Files in this item
    Nombre:
    1505.04359.pdf
    Tamaño:
    578.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10