• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Capítulos de monografías
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22917

    Título
    Some advances in constrained inference for ordered circular parameters in oscillatory systems
    Autor
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Barragán, Sandra
    Peddada, Shyamal
    Año del Documento
    2015
    Editorial
    Wiley
    Documento Fuente
    Dryden, Kent (coords). Geometry Driven Statistics. Wiley 2015, p. 97-114.
    Résumé
    Constraints on parameters arise naturally in many applications. Statistical methods that honor the underlying constraints tend to be more powerful and result in better interpretation of the underlying scientific data. In the context of Euclidean space data, there exists over five decades of statistical literature on constrained statistical inference and at least four books on the subject (e.g. Robertson et al. 1988; Silvapulle and Sen 2005). However, it was not until recently that these methods have been used extensively in applied research. For example, constrained statistical inference is gaining considerable interest among applied researchers in a variety of fields, such as, for example, toxicology (Peddada et al. 2007), genomics (Hoenerhoff et al. 2013; Perdivara et al. 2011; Peddada et al. 2003), epidemiology (Cao et al. 2011; Peddada et al. 2005), clinical trials (Conaway et al. 2004), or cancer trials (Conde et al. 2012, 2013).
    Patrocinador
    Ministerio de Ciencia e Innovación grant (MTM2012-37129)
    Junta de Castilla y León, Consejería de Educación and the European Social Fund
    Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) [Z01 ES101744-04]
    Version del Editor
    http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118866576.html
    Propietario de los Derechos
    Wiley
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22917
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Capítulos de monografías [7]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Chapter for Mardia's book Rueda et al.pdf
    Tamaño:
    294.9Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10