Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22920
Título
Degrees of freedom and model selection in semiparametric additive monotone regression
Año del Documento
2013
Documento Fuente
Journal of Multivariate Analysis. Vol 117, pp: 88-99
Abstract
The degrees of freedom of semiparametric additive monotone models are derived using results about projections onto sums of order cones. Two important related questions are also studied, namely, the de nition of estimators for the parameter of the error term and the formulation of speci c Akaike Information Criteria statistics. Several alternatives are proposed to solve both problems and simulation experiments are conducted to compare the behavior
of the di erent candidates. A new selection criterion is proposed that combines the ability to guess the model but also the e ciency to estimate the variance parameter. Finally, the criterion is used to select the model in a regression problem from a well known data set.
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación grant (MTM2012-37129)
Version del Editor
Propietario de los Derechos
Elsevier
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International