• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22933

    Título
    A new method for identification of cyclic circadian genes using circular isotonic regression.
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Congreso
    XXXV Congreso Nacional de Estadística e Investigación Operativa
    Año del Documento
    2015
    Résumé
    Identification of periodic patterns in gene expression data is important for studying the regulation mechanism of the circadian system. The information available is often given only by one or two cycles. Consequently, the number of observations is not enough to fit certain models, such as Fourier's models, properly. Some authors have already developed procedures or algorithms among which the JTK\_Cycle algorithm is the most popular one. We propose a new method to identify cyclic gene expressions based on circular order restricted inference. Validation of the method is made through real data sets and simulations. Moreover, we compare the results obtained by the method with other detecting methods developed in the literature.
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22933
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    jueves28-extendido.pdf
    Tamaño:
    112.0Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Nombre:
    abstract.v3.pdf
    Tamaño:
    5.193Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10