• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22936

    Título
    Influence of microarray normalization strategies and rhythmicity detection algorithms to detect circadian rhythms
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Peddada, Shyamal
    Congreso
    9th International Conference of the ERCIM Working Group on Computational and Methodological Statistics
    Año del Documento
    2016
    Résumé
    High-throughput microarray technologies are a widely used research tool in gene expression analysis. A large variety of preprocessing methods for raw intensity measures is available to establish gene expression values. Normalization is the key stage in preprocessing methods, since it removes systematic variations in microarray data. Then, the choice of the normalization strategy can make a substantial impact to the final results. Additionally, we have observed that the identification of rhythmic circadian genes depends not only on the normalization strategy but also on the rhythmicity detection algorithm employed. We analyze three different rhythmicity detection algorithms. On the one hand, JTK and RAIN which are widely extended among biologists. On the other hand, ORIOS, a novel statistical methodology which heavily relies on Order Restricted Inference and that we propose to detect rhythmic signal for Oscillatory Systems. Results on the determination of circadian rhythms are compared using artificial microarray data and publicly available circadian data bases.
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22936
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    BoA CFE-CMStatistics 2016-45-45.pdf
    Tamaño:
    35.27Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10