• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22937

    Título
    Evaluation of microarray normalization strategies to detect cyclic circadian genes.
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Peddada, Shyamal
    Congreso
    XXXVI Congreso Nacional de Estadística e Investigación Operativa
    Año del Documento
    2016
    Abstract
    Microarrays are a widely used research tool in gene expression analysis. A large variety of preprocessing methods for raw intensity measures is available to establish gene expression values. Normalization is the key stage in preprocessing methods, since it removes systematic variations in microarray data. Then, the subsequent analyses may be highly dependent on normalization strategy employed. Our research focuses on detecting rhythmic signals in measured circadian gene expressions. We have observed that rhythmicity detection depends not only upon the rhythmicity detection algorithm but also upon the normalization strategy employed. We analyze the effects of well-known normalization strategies in literature within three different rhythmicity detection algorithms; JTK, RAIN and our recently proposal ORI, a novel statistical methodology based on Order Restricted Inference. The results obtained are compared using artificial microarray data and publicly available circadian data bases.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/22937
    Derechos
    restrictedAccess
    Collections
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Show full item record
    Files in this item
    Nombre:
    actas-seio-online-45-46.pdf
    Tamaño:
    13.20Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10