• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22938

    Título
    A new method for detection of rhythmic signals in oscillatory systems
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Peddada, Shyamal
    Congreso
    II Encuentro Galaico-Portugués de Biometría
    Año del Documento
    2016
    Résumé
    The study of biological rhythms is receiving a lot of attention in the literature in recent years. At the core of this research lies the methodological problem of how to detect rhythmic signals in measured data. Night and day, or dark and light patterns impact on human health in many different ways. For this reason, researchers are studying the effect of sleep on the circadian clock in human body during various stages of life. Important components of this clock are the circadian genes which have rhythmic expression overtime with phases suitably matching the night and day. Consequently, the identification of rhythmic signals is a problem of considerable interest for biologists. In this work, we develop a novel statistical procedure to detect rhythmic signals in oscillatory systems based on Order Restricted Inference (ORI). This methodology is tested both on simulations and on real data bases. Moreover the obtained results are compared with the most widely extended rhythmicity detection algorithms in literature.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/22938
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Libro_Actas_BIOAPP2016-52-55.pdf
    Tamaño:
    1.005Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10