Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24372
Título
Avoiding order reduction when integrating linear initial boundary value problems with Lawson methods
Año del Documento
2017
Editorial
Oxford Academic
Documento Fuente
IMA J. Numer. Anal. d.o.i: 10.1093/imanum/drw052
Resumo
Exponential Lawson methods are well known to have a severe order reduction when integrating stiff
problems. In a previous article, the precise order observed with Lawson methods when integrating linear
problems is justified in terms of different conditions of annihilation on the boundary. In fact, the analysis
of convergence with all exponential methods when applied to parabolic problems has always been performed
under assumptions of vanishing boundary conditions for the solution. In this article, we offer a
generalization of Lawson methods to approximate problems with nonvanishing and even time-dependent
boundary values. This technique is cheap and allows to avoid completely order reduction independently
of having vanishing or nonvanishing boundary conditions.
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyecto de investigación: MTM 2015-66837-P
Version del Editor
Propietario de los Derechos
Institute of Mathematics and its Applications
Idioma
spa
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item