• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24397

    Título
    Time exponential splitting technique for the Klein-Gordon equation with Hagstrom-Warburton high-order absorbing boundary conditions
    Autor
    Alonso Mallo, IsaíasAutoridad UVA Orcid
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2016
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Computational Physics Volume 311, Pages 196-212
    Abstract
    Klein–Gordon equations on an unbounded domain are considered in one dimensional and two dimensional cases. Numerical computation is reduced to a finite domain by using the Hagstrom–Warburton (H-W) high-order absorbing boundary conditions (ABCs). Time integration is made by means of exponential splitting schemes that are efficient and easy to implement. In this way, it is possible to achieve a negligible error due to the time integration and to study the behavior of the absorption error. Numerical experiments displaying the accuracy of the numerical solution for the two dimensional case are provided. The influence of the dispersion coefficient on the error is also studied.
    Revisión por pares
    SI
    DOI
    10.1016/j.jcp.2016.02.004
    Patrocinador
    This work has obtained financial support from project MTM2011-23417 of Ministerio de Economía y Competitividad.
    Version del Editor
    http://www.sciencedirect.com/science/article/pii/S0021999116000589
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/24397
    Derechos
    restrictedAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    alonsoportilloKleinGordonJCP.pdf
    Tamaño:
    248.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10