• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24889

    Título
    Predicting Student Participation in Peer Reviews in MOOCs
    Otros títulos
    EMOOCs 2017: European MOOCs Stakeholders Summit
    Autor
    Er, ErkanAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Congreso
    European MOOCs Stakeholders Summit, EMOOCs 2017 (5º. 2017. Madrid)
    Año del Documento
    2017
    Editorial
    Springer International Publishing
    Descripción
    Producción Científica
    Documento Fuente
    Er, E., Bote-Lorenzo, M.L., Gómez-Sánchez, E., Dimitriadis, Y., Asensio-Pérez, J.I. Predicting Student Participation in Peer Reviews in MOOCs Proceedings of the Fifth European MOOCs Stakeholders Summit, Madrid, Spain, May 2017
    Zusammenfassung
    Assessing and providing feedback to thousands of student artefacts in MOOCs is an unfeasible task for instructors. Peer review, a well-known pedagogical approach that offers various learning gains, has been a common approach to address this practical challenge. However, low student participation is a potential barrier to the success of peer reviews. The present study proposes an approach to predict student participation in peer reviews in a MOOC context, which can be utilized to achieve an effective peer-review activity. We attempt to predict the number of different peer works that students will review for each of four assignments based on their past activities in the course. Results show that students’ preceding activities were predictive of their participation in peer reviews starting from the first assignment, and that the prediction accuracy improved considerably with the inclusion of past peer-review activities.
    Palabras Clave
    MOOC
    Revisión por pares
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA082U16)
    Version del Editor
    https://link.springer.com/book/10.1007/978-3-319-59044-8
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/24889
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Predicting-student-R04_106.pdf
    Tamaño:
    447.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10