Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25374
Título
Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage
Año del Documento
2017
Editorial
Institute of Physics Publishing
Descripción
Producción Científica
Documento Fuente
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 23
Abstract
In this work we study the catastrophic optical damage (COD) of graded-index separate
confinement heterostructure quantum well (QW) laser diodes based on AlGaAs/GaAs.
The emphasis is placed on the impact that the nanoscale physical properties have on the
operation and degradation of the active layers of these devices. When these laser diodes run
in continuous-wave mode with high internal optical power densities, the QW and guide layers
can experiment very intense local heating phenomena that lead to device failure. A thermomechanical model has been set up to study the mechanism of degradation. This model has been solved by applying finite element methods. A variety of physical factors related to the materials properties, which play a paramount role in the laser degradation process, have been considered. Among these, the reduced thicknesses of the QW and the guides lead to thermal conductivities smaller than the bulk figures, which are further reduced as extended defects develop in these layers. This results in a progressively deteriorating thermal management in the device. To the best of our knowledge, this model for laser diodes is the first one to have taken into account low scale mechanical effects that result in enhanced strengths in the structural layers. Moreover, the consequences of these conflicting size-dependent properties on the thermo-mechanical behaviour on the route to COD are examined. Subsequently, this approach opens the possibility of taking advantage of these properties in order to design robust diode lasers (or other types of power devices) in a controlled manner.
Palabras Clave
high power laser diode, catastrophic optical damage, thermal conductivity, mechanical strengthening, nanoscale effects, finite element methods
ISSN
0022-3727
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. Project VA293U13 and VA081U16 (003)
Ministerio de Economía, Industria y Competitividad (Proyect ENE2014-56069-C4-4-R)
Ministerio de Economía, Industria y Competitividad (Proyect ENE2014-56069-C4-4-R)
Version del Editor
Propietario de los Derechos
IOP Publishing
Idioma
eng
Derechos
restrictedAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International