• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25556

    Título
    On Weierstrass semigroups and algebraic geometry one-point codes
    Autor
    Farrán Martín, José IgnacioAutoridad UVA Orcid
    Congreso
    Coding Theory, Cryptology and Related Areas
    Año del Documento
    2000
    Editorial
    Springer-Verlag. Berlín
    Résumé
    We present two different algorithms to compute the Weierstrass semigroup at a point P together with functions for each value in this semigroup from a plane model of the curve. The first one works in a quite general situation and it is founded on the Brill-Noether algorithm. The second method works in the case of P being the only point at infinity of the plane model, what is very usual in practice, and it is based on the Abhyankar-Moh theorem, the theory of approximate roots and an integral basis for the affine algebra of the curve. This last way is simpler and has an additional advantage: one can easily compute the Feng-Rao distances for the corresponding array of one-point algebraic geometry codes, this thing be done by means of the Apéry set of the Weierstrass semigroup. Everything can be applied to the problem of decoding such codes by using the majority scheme of Feng and Rao.
    ISBN
    978-3-540-66248-8
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25556
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Comunicaciones a congresos, conferencias, etc. [6]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    ICCC98.pdf.pdf
    Tamaño:
    218.8Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10