Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25761
Título
Asymptotic Behaviour for a Class of Non-monotone Delay Differential Systems with Applications
Año del Documento
2017
Editorial
Springer
Documento Fuente
Journal of Dynamics and Differential Equations (2017)
Resumen
The paper concerns a class of n-dimensional non-autonomous delay differential equations obtained by adding a non-monotone delayed perturbation to a linear homogeneous cooperative system of ordinary differential equations. This family covers a wide set of models used in structured population dynamics. By exploiting the stability and the monotone character of the linear ODE, we establish sufficient conditions for both the extinction of all the populations and the permanence of the system. In the case of DDEs with autonomous coefficients (but possible time-varying delays), sharp results are obtained, even in the case of a reducible community matrix. As a sub-product, our results improve some criteria for autonomous systems published in recent literature. As an important illustration, the extinction, persistence and permanence of a non-autonomous Nicholson system with patch structure and multiple time-dependent delays are analysed.
ISSN
1040-7294
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad /FEDER (MTM2015-66330)
Fundaçao para a Ciencia e a Tecnologia under project UID/MAT/-04561/2013
Fundaçao para a Ciencia e a Tecnologia under project UID/MAT/-04561/2013
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/643073
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International