Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/26258
Título
Distributed Saturated Control for a Class of Semilinear PDE Systems: A SOS Approach
Año del Documento
2017
Editorial
IEEE
Descripción
Producción Científica
Documento Fuente
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017 (In press, DOI:10.1109/TFUZZ.2017.2688379)
Abstract
This paper presents a systematic approach to deal with the saturated control of a class of distributed parameter systems which can be modeled by first-order hyperbolic partial differential equations (PDE). The approach extends (also improves over) the existing fuzzy Takagi-Sugeno (TS) state feedback designs for such systems by applying the concepts of the polynomial sum-of-squares (SOS) techniques. Firstly, a fuzzy-polynomial model via Taylor series is used to model the semilinear hyperbolic PDE system. Secondly, the closed-loop exponential stability of the fuzzy-PDE system is studied through the Lyapunov theory. This allows to derive a design methodology in which a more complex fuzzy state-feedback control is designed in terms of a set of SOS constraints, able to be numerically computed via semidefinite programming. Finally, the proposed approach is tested in simulation with the standard example of a nonisothermal plug-flow reactor (PFR).
Palabras Clave
Hyperbolic PDE
Fuzzy Polynomial
SOS
Input Saturation
Distributed-parameter systems
ISSN
1063-6706
Revisión por pares
SI
Patrocinador
The research leading to these results has received funding from the European Union and from the Spanish Government (MINECO/FEDER DPI2015-70975-P).
Version del Editor
Propietario de los Derechos
IEEE
Idioma
eng
Derechos
restrictedAccess
Aparece en las colecciones
Files in questo item