• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/27595

    Título
    Descriptores para búsqueda de similitud en canciones
    Autor
    Martínez Amor, David
    Director o Tutor
    Aja Fernández, SantiagoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2017
    Titulación
    Grado en Ingeniería de Tecnologías de Telecomunicación
    Résumé
    En este trabajo se aborda el problema de la recomendación musical automática, basándonos únicamente en la señal de audio y sin ayudas externas como pueden ser etiquetas o filtros colaborativos. La idea es recomendar canciones similares a una dada, bien porque sean del mismo género o porque se parezcan musicalmente. Se presentan distintos descriptores acústicos y visuales que extraen información y características de la señal. Dada una base de datos musical heterogénea, elegimos canciones representativas de cada género, y creamos listas de recomendación para cada uno basadas en los distintos descriptores. Revisamos las listas y las valoramos usando un sistema de calificación, cuyo problema es su subjetividad, aun así, nos sirven para descartar descriptores. Al final, se consigue una base sólida de descriptores que logran buenos resultados por si solos. De manera combinada, podrían formar una buena base para un sistema de clasificación y recomendación automático.
    Materias (normalizadas)
    Música
    Descriptor
    Clasificación
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/27595
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [31257]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFG-G2884.pdf
    Tamaño:
    5.402Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10