• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Grado UVa
    • Ver item
    •   Página inicial
    • TRABALHO DE CONCLUSÃO DE ESTUDO
    • Trabajos Fin de Grado UVa
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/27595

    Título
    Descriptores para búsqueda de similitud en canciones
    Autor
    Martínez Amor, David
    Director o Tutor
    Aja Fernández, SantiagoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2017
    Titulación
    Grado en Ingeniería de Tecnologías de Telecomunicación
    Resumo
    En este trabajo se aborda el problema de la recomendación musical automática, basándonos únicamente en la señal de audio y sin ayudas externas como pueden ser etiquetas o filtros colaborativos. La idea es recomendar canciones similares a una dada, bien porque sean del mismo género o porque se parezcan musicalmente. Se presentan distintos descriptores acústicos y visuales que extraen información y características de la señal. Dada una base de datos musical heterogénea, elegimos canciones representativas de cada género, y creamos listas de recomendación para cada uno basadas en los distintos descriptores. Revisamos las listas y las valoramos usando un sistema de calificación, cuyo problema es su subjetividad, aun así, nos sirven para descartar descriptores. Al final, se consigue una base sólida de descriptores que logran buenos resultados por si solos. De manera combinada, podrían formar una buena base para un sistema de clasificación y recomendación automático.
    Materias (normalizadas)
    Música
    Descriptor
    Clasificación
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/27595
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [31257]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    TFG-G2884.pdf
    Tamaño:
    5.402Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10