Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28850
Título
Randomized Hamiltonian Monte Carlo
Año del Documento
2017
Documento Fuente
The Annals of Applied Probability, 2017, Volume 27, Number 4, p. 2159-2194.
Résumé
Tuning the durations of the Hamiltonian flow in Hamiltonian Monte Carlo (also called Hybrid Monte Carlo) (HMC) involves a tradeoff between computational cost and sampling quality, which is typically challenging to resolve in a satisfactory way. In this article, we present and analyze a randomized HMC method (RHMC), in which these durations are i.i.d. exponential random variables whose mean is a free parameter. We focus on the small time step size limit, where the algorithm is rejection-free and the computational cost is proportional to the mean duration. In this limit, we prove that RHMC is geometrically ergodic under the same conditions that imply geometric ergodicity of the solution to underdamped Langevin equations. Moreover, in the context of a multidimensional Gaussian distribution, we prove that the sampling efficiency of RHMC, unlike that of constant duration HMC, behaves in a regular way. This regularity is also verified numerically in non-Gaussian target distributions. Finally, we suggest variants of RHMC for which the time step size is not required to be small.
ISSN
1050-5164
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project MTM2013-46553-C3-1-P).
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International