• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28859

    Título
    A technique for studying strong and weak local errors of splitting stochastic integrators
    Autor
    Alamo Zapatero, AlfonsoAutoridad UVA
    Sanz Serna, Jesús MaríaAutoridad UVA Orcid
    Año del Documento
    2016
    Editorial
    Society for Industrial and Applied Mathematics
    Documento Fuente
    SIAM J. Numer. Anal. 54-6 (2016), pp. 3239-3257
    Résumé
    We present a technique, based on so-called word series, to write down in a systematic way expansions of the strong and weak local errors of splitting algorithms for the integration of Stratonovich stochastic differential equations. Those expansions immediately lead to the corresponding order conditions. Word series are similar to, but simpler than, the B-series used to analyze Runge--Kutta and other one-step integrators. The suggested approach makes it unnecessary to use the Baker--Campbell--Hausdorff formula. As an application, we compare two splitting algorithms recently considered by Leimkuhler and Matthews to integrate the Langevin equations. The word series method clearly bears out reasons for the advantages of one algorithm over the other.
    ISSN
    0036-1429
    Revisión por pares
    SI
    DOI
    10.1137/16M1058765
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project MTM2013-46553-C3-1-P).
    Version del Editor
    http://epubs.siam.org/doi/abs/10.1137/16M1058765
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/28859
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    16M1058765.pdf
    Tamaño:
    246.0Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10