• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Electricidad y Electrónica
    • DEP22 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28969

    Título
    Kinetic Monte Carlo simulations for transient thermal fields: Computational methodology and application to the submicrosecond laser processes in implanted silicon
    Autor
    Fisicaro, Giuseppe
    Pelaz Montes, María LourdesAutoridad UVA Orcid
    López Martín, PedroAutoridad UVA Orcid
    La Magna, Antonino
    Año del Documento
    2012
    Editorial
    American Physical Society
    Descripción
    Producción Científica
    Documento Fuente
    Physical Review E, 2012, 86, 036705
    Résumé
    Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.
    Palabras Clave
    Silicon
    Laser irradiation
    Irradicación con láser
    ISSN
    1539-3755
    Revisión por pares
    SI
    DOI
    10.1103/PhysRevE.86.036705
    Patrocinador
    info:eu-repo/grantAgreement/EC/FP7/258547
    Version del Editor
    https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.036705
    Propietario de los Derechos
    © American Physical Society
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/28969
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP22 - Artículos de revista [65]
    • Electrónica - Artículos de revista [33]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Kinetic-Monte-Carlo.pdf
    Tamaño:
    736.4Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10