• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia ...)
    • DEP41 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/29105

    Título
    Comprehensive evaluation of a New GPU-based approach to the shortest-path problem
    Autor
    Ortega Arranz, HéctorAutoridad UVA
    Torres de la Sierra, YuriAutoridad UVA Orcid
    Llanos Ferraris, Diego RafaelAutoridad UVA Orcid
    González Escribano, ArturoAutoridad UVA Orcid
    Año del Documento
    2015
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    International Journal of Parallel Programming, 44(3), pp 407-426, June 2016, ISSN 0885-7458
    Abstract
    The Single-Source Shortest Path (SSSP) problem arises in many different fields. In this paper, we present a GPU SSSP algorithm implementation. Our work significantly speeds up the computation of the SSSP, not only with respect to a CPU-based version, but also to other state-of-the-art GPU implementations based on Dijkstra. Both GPU implementations have been evaluated using the latest NVIDIA architectures. The graphs chosen as input sets vary in nature, size, and fan-out degree, in order to evaluate the behavior of the algorithms for different data classes. Additionally, we have enhanced our GPU algorithm implementation using two optimization techniques: The use of a proper choice of threadblock size; and the modification of the GPU L1 cache memory state of NVIDIA devices. These optimizations lead to performance improvements of up to 23% with respect to the non-optimized versions. In addition, we have made a platform comparison of several NVIDIA boards in order to distinguish which one is better for each class of graphs, depending on their features. Finally, we compare our results with an optimized sequential implementation of Dijkstra's algorithm included in the reference Boost library, obtaining an improvement ratio of up to 19x for some graph families, using less memory space.
    Revisión por pares
    SI
    DOI
    10.1007/s10766-014-0347-0
    Patrocinador
    Ministerio de Economía y Competitividad (Spain) and ERDF program of the European Union: CAPAP-H5 network (TIN2014-53522- REDT), MOGECOPP project (TIN2011-25639); Junta de Castilla y León (Spain): ATLAS project (VA172A12-2); and the COST Program Action IC1305: NESUS.
    Version del Editor
    http://link.springer.com/article/10.1007%2Fs10766-014-0347-0
    Propietario de los Derechos
    Springer
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/29105
    Derechos
    restrictedAccess
    Collections
    • DEP41 - Artículos de revista [109]
    Show full item record
    Files in this item
    Nombre:
    comprehensive.pdf
    Tamaño:
    228.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10