Mostrar el registro sencillo del ítem

dc.contributor.authorLaikhtman, Alex
dc.contributor.authorMakrinich, Gennady
dc.contributor.authorSezen, Meltem
dc.contributor.authorYildizhan, Melike Mercan
dc.contributor.authorMartínez, Jose Luís
dc.contributor.authorDinescu, Doru
dc.contributor.authorProdana, Mariana
dc.contributor.authorEnachescu, Marius
dc.contributor.authorAlonso Martín, Julio Alfonso 
dc.contributor.authorZak, Alla
dc.date.accessioned2018-03-19T10:13:46Z
dc.date.available2018-08-08T23:40:47Z
dc.date.issued2017
dc.identifier.citationJournal of Physical Chemistry C, 2017, 121 (21), pp 11747–11756es
dc.identifier.issn1932-7447es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/29141
dc.descriptionProducción Científicaes
dc.description.abstractThe chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticle surface. In the current work we put an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stability and possibility of release. To get insight on the chemical configuration, we combined the experimental analysis methods with theoretical modeling based on the density functional theory (DFT). Micro-Raman spectroscopy was used as a primary tool to elucidate chemical bonding of hydrogen and to distinguish between chemi- and physisorption. Hydrogen adsorbed in molecular form (H2) was clearly identified in all plasma-hydrogenated WS2 nanoparticles samples. It was shown that the adsorbed hydrogen is generally stable under high vacuum conditions at room temperature, which implies its stability at the ambient atmosphere. A DFT model was developed to simulate the adsorption of hydrogen in the WS2 nanoparticles. This model considers various adsorption sites and identifies the preferential locations of the adsorbed hydrogen in several WS2 structures, demonstrating good concordance between theory and experiment and providing tools for optimizing hydrogen exposure conditions and the type of substrate materials.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationHydrogen Plasmaes
dc.subject.classificationPlasma de hidrógenoes
dc.titleHydrogen Chemical Configuration and Thermal Stability in Tungsten Disulfide Nanoparticles Exposed to Hydrogen Plasmaes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/acs.jpcc.7b00074es
dc.relation.publisherversionhttps://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b00074es
dc.identifier.publicationtitleJournal of Physical Chemistry Ces
dc.peerreviewedSIes
dc.description.embargo2018-08-08es
dc.description.projectMinisterio de Economía, Industria y Competitividad (Project MAT2014- 54378-R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA050U14)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem