Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/29265
Título
A singular one-dimensional bound state problem and its degeneracies
Año del Documento
2017
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
The European Physical Journal Plus, 2017, vol. 132. 19 p.
Abstract
We give a brief exposition of the formulation of the bound state problem for the one-dimensional system of N attractive Dirac delta potentials, as an N×N matrix eigenvalue problem (ΦA=ωA). The main aim of this paper is to illustrate that the non-degeneracy theorem in one dimension breaks down for the equidistantly distributed Dirac delta potential, where the matrix Φ becomes a special form of the circulant matrix. We then give elementary proof that the ground state is always non-degenerate and the associated wave function may be chosen to be positive by using the Perron-Frobenius theorem. We also prove that removing a single center from the system of N delta centers shifts all the bound state energy levels upward as a simple consequence of the Cauchy interlacing theorem.
Palabras Clave
Dirac delta potential
Potencial delta de Dirac
Departamento
Física Teórica. Atómica y Óptica
ISSN
2190-5444
Version del Editor
Propietario de los Derechos
© 2017 Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International