• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Química Física y Química Inorgánica
    • DEP63 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/30707

    Título
    Monitoring the aging of beers using a bioelectronic tongue
    Autor
    Rodríguez Méndez, María LuzAutoridad UVA Orcid
    Ghasemi-Varnamkhasti, Mahdi
    S. Mohtasebi, S.
    Apetrei, Constantin
    Lozano, J.
    H. Razavi, S.
    Ahmadi, H.
    Año del Documento
    2012
    Descripción
    Producción Científica
    Documento Fuente
    Food Control vol. 25 p. 216-224
    Resumo
    This paper deals with the implementation and the application of a bioelectronic tongue including three enzymatic biosensors based on tyrosinase and phthalocyanines as electron mediators, to evaluate the changes that occur during the aging of beers. For this purpose, alcoholic and non alcoholic beers, packaged in can and bottle, have been analyzed using cyclic voltammetry. The electrochemical signals showed significant changes during the aging process. The features extracted from the cyclic voltammograms have been used to perform Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Data have revealed a clear discrimination among the beer classes in the aging process and the results were confirmed by Probabilistic Neural Networks (PNN) with Radial Basis Functions (RBF) and FeedForward Networks with Backpropagation (BP) learning method. The bioelectronic tongue has demonstrated a good capability to discriminate and classify the beer types satisfactorily in such a way, for all beer treatments, full classification accuracy was found.
    ISSN
    0956-7135
    Revisión por pares
    SI
    DOI
    10.1016/j.foodcont.2011.10.020
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/30707
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP63 - Artículos de revista [322]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    1-s2.0-S0956713511004245-main.pdf
    Tamaño:
    835.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10