• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31379

    Título
    Space-time variant weighted regularization improves motion reconstruction in compressed sensing accelerated cardiac cine MRI
    Autor
    Royuela del Val, Javier
    Godino Moya, AlejandroAutoridad UVA
    Menchon Lara, Rosa MaríaAutoridad UVA
    Martín Fernández, Marcos AntonioAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Congreso
    ESMRMB 2017
    Año del Documento
    2017
    Abstract
    In compressed sensing (CS) dynamic MRI, temporal sparsity is commonly exploited introducing a temporal regularization that affects the dynamic behavior of the images in moving regions. While previous works proposed to combine different sparsity terms accounting for dynamic and static regions in the image, in this work we propose a methodology to dynamically adapt the temporal regularization according to the presence of motion. The proposed method is based on a robust registration technique for non-rigid motion estimation. A variable Density k-space sampling it is applied to highly accelerated breath-hold cine data.
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project TEC2014-57428-R)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16)
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31379
    Derechos
    openAccess
    Collections
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Show full item record
    Files in this item
    Nombre:
    792_ESMRMB2017.pdf
    Tamaño:
    165.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10