Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31730
Título
List decoding algorithm based on voting in Gröbner bases for general one-point AG codes
Año del Documento
2017
Descripción
Producción Científica
Documento Fuente
Journal of Symbolic Computation. Volume 79, Part 2, pages 384-410 (2017)
Zusammenfassung
We generalize the unique decoding algorithm for one-point AG codes over the Miura-Kamiya Cab curves proposed by Lee, Bras-Amorós and O'Sullivan (2012) to general one-point AG codes, without any assumption. We also extend their unique decoding algorithm to list decoding, modify it so that it can be used with the Feng-Rao improved code construction, prove equality between its error correcting capability and half the minimum distance lower bound by Andersen and Geil (2008) that has not been done in the original proposal except for one-point Hermitian codes, remove the unnecessary computational steps so that it can run faster, and analyze its computational complexity in terms of multiplications and divisions in the finite field. As a unique decoding algorithm, the proposed one is empirically and theoretically as fast as the BMS algorithm for one-point Hermitian codes. As a list decoding algorithm, extensive experiments suggest that it can be much faster for many moderate size/usual inputs than the algorithm by Beelen and Brander (2010). It should be noted that as a list decoding algorithm the proposed method seems to have exponential worst-case computational complexity while the previous proposals (Beelen and Brander, 2010; Guruswami and Sudan, 1999) have polynomial ones, and that the proposed method is expected to be slower than the previous proposals for very large/special inputs.
Revisión por pares
SI
Patrocinador
This research was partially supported by the MEXT Grant-in-Aid for Scientific Research (A) Nos. 23246071 and 26289116, the Villum Foundation through their VELUX Visiting Professor Programme 2011--2012 and 2014, the Danish National Research Foundation and the National Science Foundation of China (Grant No. 11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography, the Danish Council for Independent Research, grant DFF-4002-00367, and the Spanish MINECO grant No. MTM2012-36917-C03-03.
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International