• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Capítulos de monografías
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Capítulos de monografías
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31741

    Título
    The metric structure of linear codes
    Autor
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2018
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    The metric structure of linear codes. In Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, pages 537-561. Editors: G.-M. Greuel, L. Narváez Macarro, S. Xambó-Descamps. Springer Verlag. ISBN: 978-3-319-96826-1 (2018)
    Abstract
    The bilinear form with associated identity matrix is used in coding theory to define the dual code of a linear code, also it endows linear codes with a metric space structure. This metric structure was studied for generalized toric codes and a characteristic decomposition was obtained, which led to several applications as the construction of stabilizer quantum codes and LCD codes. In this work, we use the study of bilinear forms over a finite field to give a decomposition of an arbitrary linear code similar to the one obtained for generalized toric codes. Such a decomposition, called the geometric decomposition of a linear code, can be obtained in a constructive way; it allows us to express easily the dual code of a linear code and provides a method to construct stabilizer quantum codes, LCD codes and in some cases, a method to estimate their minimum distance. The proofs for characteristic 2 are different, but they are developed in parallel.
    Patrocinador
    The author gratefully acknowledges the support from RYC-2016-20208 (AEI/FSE/UE), the support from The Danish Council for Independent Research (Grant No. DFF-4002-00367), and the support from the Spanish MINECO/FEDER (Grants No. MTM2015-65764-C3-2-P and MTM2015-69138-REDT).
    Version del Editor
    https://doi.org/10.1007/978-3-319-96827-8_24
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31741
    Derechos
    openAccess
    Collections
    • DEP96 - Capítulos de monografías [3]
    Show full item record
    Files in this item
    Nombre:
    SAGCART2018eprint.pdf
    Tamaño:
    306.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10