• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31750

    Título
    Bounding the number of points on a curve using a generalization of Weierstrass semigroups
    Autor
    Beelen, Peter
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2013
    Descripción
    Producción Científica
    Documento Fuente
    Designs, Codes and Cryptography. Volume 66, Issue 1-3, pages 221-230 (2013)
    Résumé
    In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in [J. Pure Appl. Algebra, 213(6):1152-1156, 2009] .
    Revisión por pares
    SI
    DOI
    10.1007/s10623-012-9685-3
    Patrocinador
    This work was supported in part by the Danish FNU grant 272-07-0266, the Danish National Research Foundation and the National Science Foundation of China (Grant No.11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography and by the Spanish grant MTM2007-64704
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31750
    Derechos
    openAccess
    Aparece en las colecciones
    • IMUVA - Artículos de Revista [104]
    • DEP96 - Artículos de revista [95]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    DCC2012eprint.pdf
    Tamaño:
    300.4Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10