Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32021
Título
Eigenvalues and constraints in mixture modeling: geometric and computational issues
Autor
Año del Documento
2018
Documento Fuente
Advances in Data Analysis and Classification, 2018, vol. 12. p. 203-233
Abstract
This paper presents a review about the usage of eigenvalues restrictions
for constrained parameter estimation in mixtures of elliptical distributions
according to the likelihood approach. These restrictions serve a twofold
purpose: to avoid convergence to degenerate solutions and to reduce the onset
of non interesting (spurious) maximizers, related to complex likelihood surfaces.
The paper shows how the constraints may play a key role in the theory
of Euclidean data clustering. The aim here is to provide a reasoned review
of the constraints and their applications, along the contributions of many authors,
spanning the literature of the last thirty years.
Revisión por pares
SI
Patrocinador
Spanish Ministerio de Economía y Competitividad (grant MTM2017-86061-C2-1-P)
Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA005P17 and VA002G18)
Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA005P17 and VA002G18)
Idioma
spa
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution 4.0 International