Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32379
Título
Residual Strain and Electrical Activity of Defects in Multicrystalline Silicon Solar Cells
Autor
Año del Documento
2014
Editorial
Polish Academy of Sciences Institute of Physics
Descripción
Producción Científica
Documento Fuente
Acta Physica Polonica A 2014; 125. pp. 1013-1016
Resumen
The growth process by casting methods of multi-crystalline Si results in a crystalline material with, among other defects, a high density of dislocations and grain boundaries. Impurity incorporation and their gathering around grain boundaries and dislocations seem to be the main factor determining the electrical activity of those defects, which limit the minority carrier lifetime. In this work, we analyze multi-crystalline Si samples by combining etching processes to reveal the defects, Raman spectroscopy for strain measurements, and light beam induced current measurements for the localization of electrically active defects. In particular, we have explored the etching routes capable to reveal the main defects (grain boundaries and dislocation lines), while their electrical activity is studied by the light beam induced current technique. We further analyze the strain levels around these defects by Raman micro-spectroscopy, aiming to obtain a more general picture of the correlation between residual stress and electrical activity of the extended defects. The higher stress levels are observed around intra-grain defects associated with dislocation lines, rather than around the grain boundaries. On the other hand, the intra-grain defects are also observed to give dark light beam induced current contrast associated with a higher electrical activity of these defects as compared to the grain boundaries
Palabras Clave
Silicio cristalino
Crystalline silicon
ISSN
1898-794X
Revisión por pares
SI
Patrocinador
Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. A166A11-2)
Ministerio de Ciencia e innovación (IPT-420000-2010- -022 INNPACTO program)
Ministerio de Ciencia e innovación (IPT-420000-2010- -022 INNPACTO program)
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International