• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/32450

    Título
    From graphene oxide to pristine graphene: revealing the inner workings of the full structural restoration
    Autor
    Rozada, Rubén
    López Santodomingo, María JoséAutoridad UVA Orcid
    Villar Rodil, Silvia
    Cabria Álvaro, IvánAutoridad UVA Orcid
    Alonso Martín, Julio AlfonsoAutoridad UVA Orcid
    Martínez Alonso, Amelia
    Tascón, Juan M. D.
    Año del Documento
    2015
    Editorial
    Royal Society of Chemistry
    Descripción
    Producción Científica
    Documento Fuente
    Nanoscale, 2015, 7, 2374
    Resumo
    High temperature annealing is the only method known to date that allows the complete repair of a defective lattice of graphenes derived from graphite oxide, but most of the relevant aspects of such restoration processes are poorly understood. Here, we investigate both experimentally (scanning probe microscopy) and theoretically (molecular dynamics simulations) the thermal evolution of individual graphene oxide sheets, which is rationalized on the basis of the generation and the dynamics of atomic vacancies in the carbon lattice. For unreduced and mildly reduced graphene oxide sheets, the amount of generated vacancies was so large that they disintegrated at 1773–2073 K. By contrast, highly reduced sheets survived annealing and their structure could be completely restored at 2073 K. For the latter, a minor atomic-sized defect with six-fold symmetry was observed and ascribed to a stable cluster of nitrogen dopants. The thermal behavior of the sheets was significantly altered when they were supported on a vacancy-decorated graphite substrate, as well as for the overlapped/stacked sheets. In these cases, a net transfer of carbon atoms between neighboring sheets via atomic vacancies takes place, affording an additional healing process. Direct evidence of sheet coalescence with the step edge of the graphite substrate was also gathered from experiments and theory.
    Palabras Clave
    Grafeno
    ISSN
    2040-3364
    Revisión por pares
    SI
    DOI
    10.1039/C4NR05816J
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project AT2011-26399 and MAT2011-22781)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA158A11-2)
    Version del Editor
    https://pubs.rsc.org/en/content/articlelanding/2015/nr/c4nr05816j#!divAbstract
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/32450
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP33 - Artículos de revista [197]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2015-Nanoscale7-2374_GOtoGrestoration.post-print.pdf
    Tamaño:
    1.221Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10